NONEXISTENCE OF CONTINUOUS SELECTIONS
OF THE METRIC PROJECTION FOR A CLASS OF
WEAK CHEBYSHEV SPACES

BY

MANFRED SOMMER

ABSTRACT. The class \(\mathcal{B} \) of all those \(n \)-dimensional weak Chebyshev subspaces of
\(C[a, b] \) whose elements have no zero intervals is considered. It is shown that there
does not exist any continuous selection of the metric projection for \(G \) if there is a
nonzero \(g \) in \(G \) having at least \(n + 1 \) distinct zeros. Together with a recent result of
Nürnberger-Sommer, the following characterization of continuous selections for \(\mathcal{B} \)
is valid: There exists a continuous selection of the metric projection for \(G \) in \(\mathcal{B} \) if
and only if each nonzero \(g \) in \(G \) has at most \(n \) distinct zeros.

If \(G \) is a nonempty subset of a normed linear space \(E \), then for each \(f \) in \(E \) we
define \(P(f) := \{ g_0 \in G \mid \| f - g_0 \| = \inf \{ \| f - g \| \mid g \in G \} \} \). \(P \) defines a set-val-
ued mapping of \(E \) into \(2^G \) which in the literature is called the metric projection onto
\(G \). A continuous mapping \(s \) of \(E \) onto \(G \) is called a continuous selection for the
metric projection \(P \) (or, more briefly, continuous selection) if \(s(f) \) is in \(P(f) \) for each
\(f \) in \(E \). In this paper we treat the problem of the existence of continuous selections
for \(n \)-dimensional subspaces \(G \) of \(C[a, b] \), with \(C[a, b] \), as usual, the Banach space
of real-valued continuous functions on \([a, b] \) under the uniform norm.

A. Lazar, P. Morris and D. Wulbert [3] have characterized the 1-dimensional
subspaces of \(C(X) \) with \(X \) compact Hausdorff, which admit a continuous selection.
They have raised the problem of characterizing the corresponding \(n \)-dimensional
subspaces.

Using the kind of selection established by Lazar-Morris-Wulbert, it does not
seem possible to get a general theorem for \(n \)-dimensional subspaces of \(C[a, b] \).
With new methods, however, and in the setting of weak Chebyshev subspaces,
Nürnberger-Sommer [4], [5] and Sommer [7], [8] have given both sufficient condi-
tions for the existence of continuous selections and characterization theorems of
the existence of continuous selections for several classes of \(n \)-dimensional weak
Chebyshev subspaces of \(C[a, b] \) (see also Nürnberger [6]).

In the following we refer to a result in [4].

Nürnberger-Sommer have shown that for those weak Chebyshev spaces \(G \) whose
elements \(g \ (g \neq 0) \) have at most \(n \) distinct zeros on \([a, b] \), there exists exactly one
continuous selection.

Here we show that for those weak Chebyshev spaces \(G \) which have no elements
vanishing on intervals but which have elements \(g \ (g \not\equiv 0)\) with at least \(n + 1\) distinct zeros, there does not exist any continuous selection. To prove this result we apply a fundamental lemma of Lazar-Morris-Wulbert.

Hence we have the following characterization of the existence of continuous selections for those \(n\)-dimensional weak Chebyshev subspaces \(G\) of \(C[a, b]\) whose elements do not vanish on intervals.

There exists a continuous selection for \(G\) if and only if each \(g\) in \(G\) has at most \(n\) distinct zeros.

In the following let \(G\) be an \(n\)-dimensional subspace of \(C[a, b]\).

1. **Definition.** \(G\) is called weak Chebyshev if each \(g\) in \(G\) has at most \(n - 1\) changes of sign, i.e. there do not exist points \(a < x_0 < x_1 < \cdots < x_n < b\) such that \(g(x_i) \cdot g(x_{i+1}) < 0, \ i = 0, \ldots, n - 1\).

R. C. Jones and L. A. Karlovitz have characterized these spaces. For this characterization we need the following definition.

2. **Definition.** If \(f\) is in \(C[a, b]\), then \(g\) in \(P(f)\) is called an *alternation element* (AE) of \(f\) if there exist \(n + 1\) distinct points \(a < x_0 < x_1 < \cdots < x_n < b\) such that \(e(-1)^i(f - g)(x_i) = \|f - g\|, \ i = 0, \ldots, n, e = \pm 1\). The points \(x_0, \ldots, x_n\) are called alternating extreme points of \(f - g\).

Jones and Karlovitz \([1]\) have proved the following theorems.

3. **Theorem.** \(G\) is weak Chebyshev if and only if for each \(f\) in \(C[a, b]\) there exists at least one AE in \(P(f)\).

4. **Theorem.** \(G\) is weak Chebyshev if and only if given \(a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\) there exists a \(g\) in \(G, g \not\equiv 0\), such that

\[
(-1)^{i+1}g(x) > 0, \quad x_{i-1} < x < x_i, \ i = 1, \ldots, n.
\]

In order to show the nonexistence of a continuous selection for a class of weak Chebyshev spaces, we need the following standard definition.

5. **Definition.** A zero \(x_0\) of \(f\) in \(C[a, b]\) is said to be a *simple zero* if \(f\) changes sign at \(x_0\) or if \(x_0 = a\) or \(x_0 = b\). A zero \(x_0\) of \(f\) in \(C[a, b]\) is said to be a *double zero* if \(f\) does not change sign at \(x_0\) and \(x_0\) is in \((a, b)\). Let \(Z(f) := \{x \in [a, b] | f(x) = 0\}\) the set of zeros of \(f\).

We denote by \(|Z(f)|\) the number of distinct zeros of \(f\) and by \(|Z^*(f)|\) the number of zeros of \(f\), counting simple zeros as one zero and double zeros as two zeros.

6. **Definition.** Let \(x_1, x_2\) be zeros of \(f\) in \([a, b]\). These zeros are said to be separated if there is a \(y_1\) in \([a, b]\) with

\[
x_1 < y_1 < x_2, \quad f(y_1) \not= 0.
\]

A zero \(x_0\) of \(f\) in \(G\) is said to be an *essential* zero with respect to \(G\), if there is a \(g\) in \(G\) with \(g(x_0) \not= 0\).

Nürnberger-Sommer \([4]\) have given the following sufficient condition for the existence of a continuous selection.
7. Theorem. Let G be weak Chebyshev. Let $|Z(g)| < n$ for each g in G, $g \not= 0$. Then there exists exactly one continuous selection.

Since $|Z(g)| < n$ for each g in G, $g \not= 0$, no g in G has a zero interval. We will show that for those weak Chebyshev spaces G which have no elements with zero intervals but which have elements g with $|Z(g)| > n + 1$, there does not exist any continuous selection. For this we need the following lemmas.

8. Lemma (Lazar-Morris-Wulbert [3]). If s is a continuous selection of $C[a, b]$ onto G and f is in $C[a, b]$, $||f|| = 1$ and 0 is in $P(f)$, then there is a g_0 in $P(f)$ such that

1. for every $x \in \text{bd } Z(P(f)) \cap f^{-1}(1)$ and every g in $P(f)$ there is a neighborhood U of x for which $g_0 > g$ on U and
2. for every $x \in \text{bd } Z(P(f)) \cap f^{-1}(-1)$ and every g in $P(f)$ there is a neighborhood V of x for which $g_0 < g$ on V.

Here let $Z(P(f)) := \{x \in [a, b] | g(x) = 0 \text{ for each } g \in P(f)\}$ and $\text{bd } Z(P(f))$ is the set of boundary points of $Z(P(f))$ under the topology of $[a, b]$.

9. Lemma (Stockenberg [9]). Let G be weak Chebyshev. Then no g in G has more than n separated, essential zeros and if there is a g in G with n separated, essential zeros $x_1 < \cdots < x_n$, then $g(x) = 0$ for all x in $[a, x_1] \cup [x_n, b]$.

Now we are able to prove the nonexistence of a continuous selection for a class of weak Chebyshev spaces.

10. Theorem. Let G be weak Chebyshev. Let no g in G ($g \not= 0$) have a zero interval but let a nontrivial function g_0 be in G such that $|Z(g_0)| > n + 1$. Then there does not exist any continuous selection.

Proof. Let $a < z_0 < z_1 < \cdots < z_n < b$ be $n + 1$ distinct zeros of g_0.

First case: $a < z_0$, $z_n < b$. We will construct a function g_0 having exactly $n - 1$ zeros with changes of sign and two further zeros on $[a, b)$. Since z_0, \ldots, z_n are separated zeros of g_0, by Lemma 9, there are two points $z_i, z_j \in \{z_0, \ldots, z_n\}, i < j$, such that

$$g(z_i) = g(z_j) = 0 \quad \text{for all } g \in G.$$

We choose $n - 1$ distinct points

$$z_n < t_1 < \cdots < t_{n-1} < b.$$

By Theorem 4 there exists a $g_0 \in G$, $g_0 \not= 0$, such that

$$(-1)^{i+1}g_0(x) > 0, \quad t_{i} < x < t_{i+1}, \quad i = 1, \ldots, n, \quad t_0 = a, \quad t_n = b.$$

Moreover $g_0(z_i) = g_0(z_j) = 0$.

Since t_1, \ldots, t_{n-1} are zeros with changes of sign of g_0 and G is weak Chebyshev of dimension n, the function g_0 has no further change of sign on (a, b) and, therefore, no change of sign at z_i and z_j.

Let $||g_0|| < 1$. We choose $n + 1$ distinct points $\{v_i\}_{i=0}^n$ satisfying

$$z_i < v_0 < z_j < v_1 < t_1 < v_2 < \cdots < t_{n-1} < v_n < b.$$
We choose $\varepsilon > 0$ such that
\[\{z_i, z_j, t_1, \ldots, t_{n-1}, b\} \cap [v_l - \varepsilon, v_l + \varepsilon] = \emptyset, \quad l = 0, \ldots, n. \]

Now we construct an $f \in C[a, b]$ as follows:

(a)
\[f(z_i) = 1, \quad f(z_j) = -1, \]
\[f(x) = 1 \text{ for all } x \in [v_0 - \varepsilon, v_0 + \varepsilon], \]
\[f(x) = (-1)^{l+1} \text{ for all } x \in [v_l - \varepsilon, v_l + \varepsilon], l = 1, \ldots, n. \]

(b)
\[\max\{-1 + g_0(x), -1\} < f(x) < \min\{1 + g_0(x), 1\} \quad \text{for all } x \in [a, b]. \]

Then $\|f - 0\| = \|f - g_0\| = 1$. Because of $g(z_i) = 0$ for all $g \in G$, we always get
$\|f(z_i) - g(z_i)\| = 1$ and, therefore, 0 and g_0 are elements of $P(f)$.

Now let $g \in P(f)$. For each $l \in \{1, \ldots, n\}$ there exists a $y_l \in [v_l - \varepsilon, v_l + \varepsilon]$ such that $(-1)^l g(y_l) > 0$. Hence the function g has at least $n - 1$ changes of sign on $(v_l - \varepsilon, b)$. Then $g \geq 0$ on $[a, v_l - \varepsilon]$.

Therefore the function g has a zero in z_l and also in z_l, if $z_l > a$.

Since no $g \in G$ has a zero interval, it follows that $z_l, z_j \in \text{bd}Z(P(f))$. Now we apply Lemma 8.

If there exists a continuous selection, then there exists a $\tilde{g} \in P(f)$ such that
(i) for z_l and g_0 there is a neighborhood U of z_l for which $\tilde{g} > g_0$ on U, and
(ii) for z_j and 0 there is a neighborhood V of z_j for which $\tilde{g} < 0$ on V.

Since $\tilde{g} \geq g_0$ on U, $\tilde{g} \equiv 0$.

Moreover, $\tilde{g} > 0$ on $[a, v_l - \varepsilon]$. Therefore, in every neighborhood V of z_j there is a point \tilde{x} such that $\tilde{g}(\tilde{x}) > 0$. But this is a contradiction to Lemma 8.

Second case: $a < z_0, z_n < b$. We can treat this case analogously.

Third case: Let $|Z(g)| < n$ on $[a, b)$ and on $(a, b]$ for all $g \in G$. By hypothesis there is a $\tilde{g}_0 \in G, \tilde{g}_0 \equiv 0$, with exactly $n + 1$ distinct zeros $a = z_0 < z_1 < \cdots < z_n = b$. Let $a < t_1 < t_2 < \cdots < t_k < b$ be all zeros with changes of sign and $a < y_1 < y_2 < \cdots < y_{n-k-1} < b$ be all double zeros of \tilde{g}_0.

First we show that $k = n - 1$ or $k = n - 2$. No other possibilities are allowed.

We assume that $k < n - 3$. We choose $n - k - 1$ points $z_{n-1} < t_{k+1} < \cdots < t_{n-1} < b$. By Theorem 4 there exists a $g_0 \in G, g_0 \equiv 0$, such that
\[(-1)^{i+1} g_0(x) > 0, \quad t_{i-1} < x < t_i, i = 1, \ldots, n, t_0 = a, t_n = b.\]

We may assume that $g_0 \cdot \tilde{g}_0 \geq 0$ on $[a, t_{k+1}]$. Since $n - k > 3$, \tilde{g}_0 has at least $n - k - 1 \geq 2$ double zeros on (a, b) and therefore $|Z^*(\tilde{g}_0)| > n + 1$ on (a, b). If $g_0(y_i) \neq 0$ for all $i \in \{1, \ldots, n - k - 1\}$, then for sufficiently small $c > 0$ the function $\tilde{g}_0 - cg_0$ has at least $n + 1$ changes of sign. This is a contradiction of the hypothesis on G.

If there are $i_1, i_2 \in \{1, \ldots, n - k - 1\}$ such that $g_0(y_{i_1}) = g_0(y_{i_2}) = 0$, then g_0 has $n + 1$ distinct zeros $t_1, \ldots, t_{n-1}, y_{i_1}, y_{i_2}$ on (a, b). This is also a contradiction of the hypothesis.
Therefore there is exactly one double zero \(y_\circ \) of \(g_0 \) such that \(g_0(y_\circ) = 0 \). Then \(g_0 \) has \(n \) distinct zeros \(t_1, \ldots, t_{n-1}, y_\circ \) on \((a, b)\). Then for sufficiently small \(c > 0 \) the function \(\tilde{g}_0 - cg_0 \) has at least \(k + 2(n - k - 2) = n + n - k - 4 > n - 1 \) changes of sign on \((a, b)\) because \(g_0 \) does not vanish on exactly \(n - k - 2 \) double zeros of \(g_0 \). Moreover \(\tilde{g}_0 - cg_0 \) has a further zero in \(y_\circ \) and also a further zero on a neighborhood of \(a \), because \(g_0 \cdot \tilde{g}_0 > 0 \) on \([a, t_{k+1}]\).

Hence \(g_0 - cg_0 \) has at least \(n + 1 \) distinct zeros on \([a, b)\). This is a contradiction of the hypothesis of this case. Hence we have shown that \(n - k = 1 \) or \(n - k = 2 \).

We distinguish these two cases:

(i) \(n - k = 1 \). Therefore \(\tilde{g}_0 \) has exactly \(n - 1 \) changes of sign on \((a, b)\). Let \(g \in G \), \(g \not\equiv 0 \). Then \(g(a) = g(b) = 0 \), because otherwise the function \(\tilde{g}_0 - cg \) has \(n \) changes of sign for sufficiently small \(c \).

Therefore \(g(a) = g(b) \) for all \(g \in G \).

Now we proceed as we did in the first case. We choose \(n \) distinct points \(\{v_l\}_{l=1}^{n} \) satisfying

\[
a < v_1 < z_1 < v_2 < z_2 < \cdots < v_{n-1} < z_{n-1} < v_n < b.
\]

Let \(\|\tilde{g}_0\| < 1 \) and \(\tilde{g}_0 > 0 \) on \([a, z_1]\). We choose \(\epsilon > 0 \) such that

\[
\{z_0, \ldots, z_n\} \cap [v_l - \epsilon, v_l + \epsilon] = \emptyset, \quad l = 1, \ldots, n.
\]

We construct an \(f \in C[a, b] \) as follows:

(a)

\[
f(a) = 1,
\]

\[
f(x) = (-1)^{l-1} \quad \text{for all } x \in [v_l - \epsilon, v_l + \epsilon], l = 1, \ldots, n,
\]

\[
f(b) = (-1)^n;
\]

(b)

\[
\max\{-1 + \tilde{g}_0(x), -1\} < f(x) < \min\{1 + \tilde{g}_0(x), 1\} \quad \text{for all } x \in [a, b].
\]

Then \(\|f - 0\| = \|f - \tilde{g}_0\| = 1 \) and \(0, \tilde{g}_0 \in P(f) \).

It is easy to show that each \(g \in P(f) \) has exactly \(n - 1 \) changes of sign. Moreover \(g(a) = g(b) = 0 \) for all \(g \in P(f) \). Therefore \(a, b \in \text{bd}Z(P(f)) \). Applying Lemma 8 to the point \(a \) and \(\tilde{g}_0 \in P(f) \) and to the point \(b \) and \(0 \in P(f) \) we get a contradiction of the hypothesis that there exists a continuous selection.

(ii) \(n - k = 2 \). Therefore, \(\tilde{g}_0 \) has exactly \(n - 2 \) zeros with changes of sign and exactly one double zero \(z_1 \) on \((a, b)\).

We choose \(n - 1 \) distinct points \(\{v_l\}_{l=1}^{n-1} \) satisfying

\[
a < z_1 < v_1 < z_2 < v_2 < \cdots < v_{n-2} < z_{n-1} < v_{n-1} < b.
\]

Let \(\|\tilde{g}_0\| < 1 \) and \(\tilde{g}_0 > 0 \) on \([a, z_1]\). We choose \(\epsilon > 0 \) such that

\[
\{z_0, \ldots, z_n\} \cap [v_l - \epsilon, v_l + \epsilon] = \emptyset, \quad l = 1, \ldots, n - 1
\]

and \(a + \epsilon < z_1 \).
We construct an \(f \in C[a, b] \) as follows:

(a)
\[
\begin{align*}
 f(x) &= 1 \quad \text{for all } x \in [a, a + \epsilon], \\
 f(x) &= (-1)^i \quad \text{for all } x \in [v_l - \epsilon, v_l + \epsilon], \; l = 1, \ldots, i - 1, \\
 f(x) &= (-1)^i' \quad \text{for all } x \in [v_l - \epsilon, v_l + \epsilon], \; l = i, \ldots, n - 1, \\
 f(b) &= (-1)^n;
\end{align*}
\]

(b)
\[
\max\{-1 + \tilde{g}_0(x), -1\} < f(x) < \min\{1 + \tilde{g}_0(x), 1\} \quad \text{for all } x \in [a, b].
\]

Then \(\|f - 0\| = \|f - \tilde{g}_0\| = 1 \) and \(0, \tilde{g}_0 \in P(f) \), since \(f - 0 \) has \(n + 1 \) alternating extreme points.

Let \(g \in P(f) \), \(g \not\equiv 0 \). Then it is easy to show that \(g \) has at least \(n - 2 \) changes of sign and a double zero at \(z_i \), since otherwise \(g \) has \(n \) changes of sign. This would be a contradiction of the hypothesis on \(G \).

Since \(g(a) > 0 \), \((-1)^n g(b) > 0 \), for sufficiently small \(c > 0 \) the function \(\tilde{g}_0 - cg \) has \(n - 2 \) changes of sign, a double zero at \(z_i \) and two further zeros on neighborhoods of \(a \) and \(b \). Since by hypothesis \(|Z(\tilde{g}_0 - cg)| < n \) on \([a, b] \) and on \((a, b) \), the function \(\tilde{g}_0 - cg \) has two zeros at \(a \) and \(b \). Therefore \(g(a) = g(b) = 0 \) for all \(g \in P(f) \) and \(a, z_i, b \in \text{bd}Z(P(f)) \).

Applying Lemma 8 to the point \(a \) and \(\tilde{g}_0 \in P(f) \) and to the point \(z_i \) and \(0 \in P(f) \) we get a contradiction of the hypothesis that there exists a continuous selection.

Now we give two examples showing that it is necessary to distinguish the two cases \(n - k = 1 \) and \(n - k = 2 \) in the third part of the above proof.

Example 1. \(G := \langle \sin \frac{1}{2}x, \sin x \rangle \subset C[0, 2\pi] \). Here \(|Z(g)| < 2 \) for all \(g \in G \) on \([0, 2\pi] \) and on \((0, 2\pi) \). The function \(\tilde{g}_0(x) = \sin x \) has exactly the distinct zeros \(0, \pi, 2\pi \) such that \(n - k = 2 - 1 = 1 \).

Example 2. \(G := \langle x^3, |x|(1 - |x|) \rangle \subset C[-1, 1] \). Here \(|Z(g)| < 2 \) for all \(g \in G \) on \([-1, 1] \) and on \((-1, 1) \). There is no \(g \in G \) with three zeros \(-1 = z_0 < z_1 < z_2 = 1 \) such that \(z_1 \) is a zero with change of sign of \(g \) but the function \(\tilde{g}_0(x) = |x|(1 - |x|) \) has exactly the distinct zeros \(-1, 0, 1 \) where \(0 \) is a double zero of \(\tilde{g}_0 \). Therefore \(n - k = 2 - 1 = 1 \).

Last we give a class of weak Chebyshev subspaces \(G \) of \(C[a, b] \) satisfying the additional condition that no \(g \) in \(G \), \(g \not\equiv 0 \), has a zero interval. Let \(g_0 \) be a nonnegative function in \(C[a, b] \) having no zero interval, but at least two distinct zeros on \([a, b] \). Then for any \(g_0 \) having these properties, the space \(G \) spanned by the functions \(g_0(x), xg_0(x), \ldots, x^{n-2}g_0(x), x^{n-1}g_0(x) \) is a weak Chebyshev space in \(C[a, b] \), since each \(g \) in \(G \) has the representation \(g(x) = g_0(x)\Sigma_{i=0}^{n-1} a_i x^i \) and since the function \(\Sigma_{i=0}^{n-1} a_i x^i \) has at most \(n - 1 \) changes of sign on \((a, b) \). Since \(g_0 \) has no zero interval, no \(g \) in \(G \), \(g \not\equiv 0 \), has a zero interval.
References

Institut für Angewandte Mathematik der Universität Erlangen-Nürnberg, Martensstrasse 3, 8520 Erlangen, Germany