An asymptotic theory for a class of nonlinear Robin problems. II

Author:
F. A. Howes

Journal:
Trans. Amer. Math. Soc. **260** (1980), 527-552

MSC:
Primary 34E15

MathSciNet review:
574797

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various asymptotic phenomena exhibited by solutions of singularly perturbed Robin boundary value problems are studied in the case when the right-hand side grows faster than the square of the derivative.

**[1]**Earl A. Coddington and Norman Levinson,*A boundary value problem for a nonlinear differential equation with a small parameter*, Proc. Amer. Math. Soc.**3**(1952), 73–81. MR**0046517**, 10.1090/S0002-9939-1952-0046517-3**[2]**F. W. Dorr, S. V. Parter, and L. F. Shampine,*Applications of the maximum principle to singular perturbation problems*, SIAM Rev.**15**(1973), 43–88. MR**0320456****[3]**L. È. Èl′sgol′c,*Qualitative methods in mathematical analysis*, Translations of Mathematical Monographs, Vol. 12, American Mathematical Society, Providence, R.I., 1964. MR**0170048****[4]**A. Erdélyi,*Singular perturbations of boundary value problems involving ordinary differential equations*, J. Soc. Indust. Appl. Math.**11**(1963), 105–116. MR**0152720****[5]**S. Haber and N. Levinson,*A boundary value problem for a singularly perturbed differential equation*, Proc. Amer. Math. Soc.**6**(1955), 866–872. MR**0074634**, 10.1090/S0002-9939-1955-0074634-3**[6]**Wolfgang Hahn,*Stability of motion*, Translated from the German manuscript by Arne P. Baartz. Die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag New York, Inc., New York, 1967. MR**0223668****[7]**J. W. Heidel,*A second-order nonlinear boundary value problem*, J. Math. Anal. Appl.**48**(1974), 493–503. MR**0377163****[8]**F. A. Howes,*An asymptotic theory for a class of nonlinear Robin problems*, J. Differential Equations**30**(1978), no. 2, 192–234. MR**513270**, 10.1016/0022-0396(78)90014-1**[9]**F. A. Howes,*Singularly perturbed superquadratic boundary value problems*, Nonlinear Anal.**3**(1979), no. 2, 175–192. MR**525970**, 10.1016/0362-546X(79)90075-0**[10]**E. L. Ince,*Ordinary Differential Equations*, Dover Publications, New York, 1944. MR**0010757****[11]**Lloyd K. Jackson,*Subfunctions and second-order ordinary differential inequalities*, Advances in Math.**2**(1968), 307–363. MR**0229896****[12]**W. E. Johnson and L. M. Perko,*Interior and exterior boundary value problems from the theory of the capillary tube*, Arch. Rational Mech. Anal.**29**(1968), 125–143. MR**0223638****[13]**R. E. O'Malley, Jr.,*On singular perturbation problems with interior nonuniformities*, J. Math. Mech.**19**(1970), 1103-1112.**[14]**L. M. Perko,*Boundary layer analysis of the wide capillary tube*, Arch. Rational Mech. Anal.**45**(1972), 120–133. MR**0345511****[15]**-,*Singularly perturbed two-point boundary value problems with*,*nonlinearities*, Arch. Rational Mech. Anal. (to appear).**[16]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[17]**A. B. Vasil′eva,*Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives*, Uspehi Mat. Nauk**18**(1963), no. 3 (111), 15–86 (Russian). MR**0158137**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34E15

Retrieve articles in all journals with MSC: 34E15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1980-0574797-6

Article copyright:
© Copyright 1980
American Mathematical Society