CRITICAL POINTS OF HARMONIC FUNCTIONS ON DOMAINS IN \mathbb{R}^3

BY
ROBERT SHELTON

ABSTRACT. It is shown that the critical point relations of Morse theory, together with the maximum principle, comprise a complete set of critical point relations for harmonic functions of three variables. The proof proceeds by first constructing a simplified example and then developing techniques to modify this example to realize all admissible possibilities. Techniques used differ substantially from those used by Morse in his solution of the analogous two-variable problem.

Introduction. Critical point theory is a subject which has been of pure and applied interest for many years. Morse resolved the problem associated with the study of critical points of nondegenerate functions of several variables in the late 1920's. A. Sard, a student of Morse, is credited with the discovery of a method to perturb a function with a degenerate critical point and to split or bifurcate it into several nondegenerate critical points. R. Thom has done famous recent work on applications of bifurcation theory to many difficult problems in biology as well as other areas not usually associated with differential topology.

This paper deals with an aspect of the following classical problem. A certain collection of functions is fixed and we seek a full description of the critical points theory of the functions considered as a class. If the functions are merely C^∞, then the best available description of their critical point theory is contained in the Morse inequalities [3]. These inequalities relate the numbers and the kinds of critical points of a function with the Betti numbers of the domain. In his book, Topological methods in the study of functions of a complex variable [1], Morse did a complete treatment of the critical points theory of functions of two variables which resemble harmonic functions topologically. In doing this, he proved all the standard theorems relating zeros, poles, and branch points of his class of pseudoharmonic and pseudomeromorphic functions, the latter of which he called inner transformations. It would seem that the critical point behavior of harmonic functions of two variables should then be determined solely by topological considerations. In this vein, Morse proved a completeness result which can be summarized as follows. Given integers which satisfy the Morse inequalities for a harmonic function on a topological disc (including the condition that no interior point can be an extremum), there exists a region Ω in \mathbb{R}^2, Ω homeomorphic to a two-cell, and a function U such that the given integers describe the critical points of U on Ω and its boundary. Roughly speaking, it means that the theory of critical points of
 harmonic functions of two variables is as general as the theory for the differentiable functions which obey the maximum principle. If it were not known directly, this result would imply the accessibility of the theorems of complex analysis by topological methods.

The present work is a direct generalization of [2] to harmonic functions of three variables. It is a negative result which may be summarized as follows. Any extension of the critical point theory of harmonic functions in the plane to harmonic functions of three variables must describe behavior permitted by the maximum principle and the topological considerations which apply to the class of differentiable functions. These constraints are so weak as to essentially preclude any meaningful extensions of the theorems in [1].

As in [2], harmonic functions are constructed with critical points prescribed in advance. Morse called such functions, together with their domains, harmonic realizations of type numbers (type numbers are integer solutions of the Morse inequalities). We have retained this terminology. The constructive techniques of this work differ radically from those used in [2]. The functions in Morse's two-dimensional examples are essentially homogeneous harmonic polynomials, whereas the functions used in this paper are the potentials of charge distributions. These distributions are composed of finite unions of smooth, compact subsets of R^3, each having codimension two or more. The geometric character of these sets is closely related to the type numbers which are to be realized.

We assert that it is also possible to construct harmonic realizations in the plane using the techniques of this paper. The functions in such a construction are finite sums of logarithmic singularities. For example, let $\lambda_1, \lambda_2, \ldots, \lambda_M$, be points in the open right half-plane. Define

$$u_\varepsilon(z) = \text{Re}(z) + \sum_{i=1}^{M_1} \varepsilon \ln \left| z - \left(1 + e^{-1/\varepsilon}\right)^{\lambda_i/|\lambda_i|} \right|,$$

$|z| < 1$. Then, for ε sufficiently small and positive, the function $u_\varepsilon(z)$ on the unit disc is a harmonic realization of the basic set of type numbers $\mu_0 = M_1 + 1$, $\mu_1 = 0$. To realize any set of type numbers, we need only modify the boundary of the domain as in Theorem 4.2 of [2]. To verify these assertions it is necessary to use arguments similar to those of Theorems 3 and 4.

An intriguing but far more difficult problem is the following. Is it possible to construct harmonic realizations in three dimensions using polynomials as in [2]? The examples of this paper indicate that there are no analytical obstructions to doing this. Moreover, a careful study of these examples is a natural starting point in the search for the more natural polynomial examples.

1.0. Preliminaries. Let u be a function of class C^2 defined in some neighborhood of the origin in R^n. The function, u, will be called nondegenerate or n.d. if gradient of u at the point X equals zero, written $\text{grad}(u(X)) = 0$, implies matrix of second derivatives of u at X, written $Hu(X)$, is nonsingular. If P is a critical point of u, i.e. $\text{grad}(u(P)) = 0$, and u is n.d. at P, then the index of the critical point, P, is defined to be the number of eigenvalues of $Hu(P)$ which are less than 0.
If \(u \) is a function defined in a neighborhood of \(\Omega \), \(\Omega \) a bounded open subset of \(\mathbb{R}^n \) whose boundary \(\Sigma \) is an \(n-1 \) manifold of class \(C^2 \), \(u \) is n.d. on \(\Omega \) and \(\text{grad}(u) \) does not vanish on \(\Sigma \), then \(u \) has finitely many critical points on \(\Omega \). For \(i = 0, 1, \ldots, n \), the interior type numbers \(M_i \) of \(u \) on \(\Omega \) are defined by \(M_i = \text{number of critical points of } u \text{ on } \Omega \) of index \(i \).

Let \(N \) be the normal to \(\Sigma \) directed out of \(\Omega \). Points of \(\Sigma \) are termed entrant if \(\text{grad}(u) \cdot N < 0 \) and emergent if \(\text{grad}(u) \cdot N > 0 \). Let \(\Sigma^- = \) the entrant points of \(\Sigma \), an open submanifold of \(\Sigma \). Suppose the restriction of \(u \) to \(\Sigma \) is n.d. Then the restriction of \(u \) to \(\Sigma^- \) has finitely many critical points, and the boundary type numbers of \(u \) on \(\Omega \), \(\mu_i, \ i = 0, 1, \ldots, n-1 \), are defined as follows: \(\mu_i \) = the number of critical points of the restriction of \(u \) to \(\Sigma^- \) which are of index \(i \).

Suppose \(\Omega \) is a bounded open subset of \(\mathbb{R}^3 \) with a boundary, \(\Sigma \), a 2-manifold of class \(C^2 \). If \(u \) is a harmonic function defined in a neighborhood of \(\Omega \), n.d. on \(\Omega \), has no critical points on \(\Sigma \), and restriction of \(u \) to \(\Sigma \) is n.d., then the betti numbers of \(\Omega \), \(R_i, \ i = 0, 1, 2 \), and the type numbers of \(u, (\mu_i, M_j), \ i = 0, 1, 2, j = 0, 1, 2, 3 \), satisfy the following relations.

\[
\begin{align*}
a. & \quad M_0 = M_3 = 0. \\
b. & \quad \mu_0 > R_0. \\
c. & \quad \mu_0 - \mu_1 < R_0 - R_1 + M_1. \\
d. & \quad \mu_0 - \mu_1 + \mu_2 = R_0 - R_1 + R_2 + M_1 - M_2.
\end{align*}
\]

(1) follows from Theorem 1.2 of [2]. We term a set of numbers, \((R_i, \mu_i, M_j) \), \(i = 0, 1, 2, j = 1, 2 \), which satisfy (1), b, c, d, condition numbers.

If \((R_i, \mu_i, M_j) \) are condition numbers and are the betti numbers of a domain \(\Omega \) in \(\mathbb{R}^3 \), and the boundary and interior type numbers of a harmonic function \(u \) on \(\Omega \), where \(u \) and \(\Omega \) satisfy the hypothesis of Theorem 1.2 of [2], then the numbers are said to be harmonically realizable and the domain, \(\Omega \), and function, \(u \), are said to be a harmonic realization of these numbers.

In this paper, examples will be constructed to prove that all condition numbers are harmonically realizable. The harmonic functions of these examples will be essentially the electrostatic potentials of charged arcs. Theorem 1 is a statement of classical analysis which describes the local behavior of such potentials. Although Theorem 1 is proved in a more general setting, we shall only need the special case when the Source (\(\sigma \)) of the potential is an arc.

1.1. Notation for Theorem 1. Unless otherwise specified, capital letters will denote points in \(\mathbb{R}^n (n \geq 3) \) or a vector-valued function. Let \(\sigma \) be a compact, \(d \)-dimensional, \(C^\infty \) submanifold of \(\mathbb{R}^n \), possibly with a boundary. For \(\alpha \) an \(n \)-tuple of nonnegative integers, \(\alpha_1, \alpha_2, \ldots, \alpha_n \) and \(f \) a suitably differentiable function of \(n \) variables, let \(f_a \) be \(\partial^m f / \partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n} \) where \(m = \Sigma_{k=1}^n \alpha_k \). Define the function \(g \) from \(\mathbb{R}^n - \{0\} \) to \(\mathbb{R}_+ \) by \(g(X) = |X|^2 - n \). For each \(X \in \mathbb{R}^n - \sigma \), define the function \(u_{\sigma,a} \) by \(u_{\sigma,a}(X) = \int_{\sigma} g_a(X - Z) \, dZ \).

Let \(\sigma_1 = \text{interior of } \sigma \) and \(\sigma_0 \) be any compact subset of \(\sigma_1 \). For each \(\delta > 0 \), let
$T_\delta = \{ X | X \in \mathbb{R}^n, \text{dist}(X, \sigma_0) < \delta \}$ and $T_\delta^* = T_\delta - \sigma$. Let $Z_X = \{ Z | Z \in \sigma, |Z - X| \text{ is minimum} \}$. Select $\delta_0 > 0$ so that for $X \in T_{\delta_0}$, all the sets $\{ Z_X \}$ are singletons, and the function defined by $Z(X) = Z_X$ is a C^∞ mapping of T_{δ_0} into σ_1. For $Z \in \sigma_1$, let P_Z denote the tangent plane to σ_1 at Z. Let $Y: T_{\delta_0} \rightarrow \mathbb{R}^n, \gamma: T_{\delta_0} \rightarrow \mathbb{R}$ be functions defined by $Y(X) = X - Z(X)$ and $\gamma(X) = |Y(X)| = \text{distance from } X \text{ to } \sigma_1$.

Suppose $k = n - d > 2$. Define the function $\nu_{o,a}: T_{\delta_0}^* \rightarrow \mathbb{R}$ by the following equations

$$v_{o,a}(X) = \int_{P_Z(X)} g_a(X - \lambda) d\lambda, \text{ for } k + m > 3, m = \sum_{k=1}^{n} \alpha_k$$

and

$$v_{o,a}(X) = -\omega_{d-1} \ln \gamma(X), \text{ for } k + m = 2, m = \sum_{k=1}^{n} \alpha_k$$

where ω_{d-1} is the area of S^{d-1}, the unit sphere in \mathbb{R}^d. We take $\omega_0 = 2$. Let $\phi: \mathbb{R}^n - \{0\} \rightarrow \mathbb{R}$ be the function defined by $\phi(X) = C_{d,k}|X|^{2-k}$ for $k > 2$ and $\phi(X) = -\omega_{d-1} \ln |X|$ for $k = 2$, where $C_{d,k} = \omega_{d-1}/\sigma^{d-1} \frac{\sin \theta}{\cos^{k-3} \theta} d\theta$. Fix a point X_0 in \mathbb{R}^n. Define the transformation $Y_0(X) = Y(X_0) + Y_{X_0} \cdot (X - X_0)$ where Y_{X_0} is the Jacobian matrix of Y at X_0 and \cdot indicates matrix multiplication. Then

$$v_{o,a}(X_0) = \left(\phi(|Y_0(X)|) \right)_{\alpha}$$

where the derivatives on the right-hand side of (4) are with respect to X and are evaluated at $X = X_0$. Since the transformations $Y(X)$ and $Y_0(X)$ differ by $O(|X - X_0|^2)$, we have

$$v_{o,a}(X) = \begin{cases} \left(\phi(|Y(X)|) \right)_{\alpha} + O(|Y(X)|^{3-k-m}), & m + k - 3 > 0, \\ \left(\phi(|Y(X)|) \right)_{\alpha} + O(\ln |Y(X)|), & m + k - 3 = 0. \end{cases}$$

THEOREM 1. For every $\epsilon > 0$, there exists a $\delta > 0$ such that for all X in T_{δ}^*,

$$[\gamma(X)]^{k+m-2} |v_{o,a}(X) - v_{o,a}(X)| < \epsilon, \quad k + m > 3,$$

and

$$|\ln \gamma(X)|^{-1} |v_{o,a}(X) - v_{o,a}(X)| < \epsilon, \quad k = 2, m = 0.$$

PROOF. We prove the two cases separately.

CASE 1 $(m + k > 3)$. For $X \in \mathbb{R}^n$, $Z \in \sigma_1$, $X \neq Z$, define the functions T, V and θ as follows. $T(X, Z) = \tau$, where τ is the point in P_Z closest to X, $V(X, Z) = Z - T(X, Z)$ and $\theta(X, Z) = |V(X, Z)|/|X - Z|$. The situation is illustrated in Figure 1 for $n = 3$ and σ a plane curve. Note that the functions T, V and θ are C^∞. Since σ_1 is a smooth submanifold, lim $\theta(X, Z) = 1$ as X approaches σ_1 through T_{δ_1}, Z in σ_1, $|X - Z| \rightarrow 0$ and $\sqrt{\gamma(X)} < |X - Z|$. Since σ_0 is compact, we can find positive numbers δ_1, ρ_1 such that for $X \in T_{\delta_1}, Z$ in σ_1 and $\sqrt{\gamma(X)} < |X - Z| < \rho_1, \theta(X, Z) > \frac{1}{2}$. For $X \in T_{\delta_0}$ and $\gamma(X) < \rho < \rho_1$, let $S_{r,X} = \{ Z | Z \in \sigma, |X - Z| = r \}$. Note that for r and $\gamma(X)$ sufficiently small the set $S_{r,X}$ approximates a
(d - 1)-sphere of radius approximately equal to \(\sqrt{r^2 - y^2(X)}\). Let \(s(r, X) = \int_{S_r} d\zeta\). Since \(\sigma\) is a smooth submanifold in \(\mathbb{R}^n\), \(\lim_{\theta \to 0^+} \omega_{d-1}^{-1}s(r, X) = 1\) as \(X \to \sigma\), through \(T_{\delta_2}\), \(r \to 0^+\), and \(\sqrt{y(X)} < r\). Again by compactness of \(\sigma\), we find positive numbers \(\delta_2, \rho_2\) with \(\delta_2 < \delta_1\) and \(\rho_2 < \rho_1\), such that \(X \in T_{\delta_2}\) and \(\sqrt{y(X)} < r < \delta_2\) implies \(s(r, X) < 2\omega_{d-1}^{-1}\). We also insist that \(\delta_2, \rho_2\) be so small that whenever \(X \in T_{\delta_2}\) and \(0 < r < \rho_2\), \(S_{r,X}\) does not intersect the boundary of \(\sigma\). To save notation, let \(v(X) = v_{\sigma, \alpha}(X)\). Define the function \(u\) from \(T_{\delta_2}^*\) to \(R\) by the equation

\[
u(X) = \int_{|Z - X| < \rho_2} g_\alpha(X - Z) dZ. \quad (7)
\]

Note that \(u(X)\) differs from \(u_{\sigma, \alpha}(X)\) on \(T_{\delta_2}^*\) by a bounded function. At this point, we note that the assertions (6a) and (6b) remain valid if \(u(X)\) is replaced by a function which differs from it by a bounded function. Therefore, we may prove Theorem 1 for \(u(X)\) in place of \(u_{\sigma, \alpha}(X)\). For \(X \in T_{\delta_2}^*\), \(\sqrt{y(X)} < r < \rho_2\), define

\[
\bar{g}(r) = \max_{Z \in S_r} |g_\alpha(X - Z)|. \quad (8)
\]

For \(X \in T_{\delta_2}^*\), let

\[
u_1(X) = \int_{\sqrt{y(X)} < |Z - X| < \rho_2} g_\alpha(X - Z) dZ
\]

\[= \int_{r = \sqrt{y(X)}}^\rho \int_{S_{r,X}} \frac{g_\alpha(X - \zeta)}{\zeta} \frac{d\zeta}{d\zeta} dr.
\]

Using the estimate for \(\theta(X, Z)\) with \(X \in T_{\delta_1}\) and the definition of \(\bar{g}\), we have

\[|\nu_1(X)| < \int_{r = \sqrt{y(X)}}^\rho 4\omega_{d-1}^{-1} \bar{g}(r) dr.
\]

Moreover, from the homogeneity of \(g(X)\) we have \(\bar{g}(r) < C_{n,m}r^{2-n-m}\) with \(C_{n,m} > 0\). Combining these two estimates, we have

\[|\nu_1(X)| < 4C_{n,m} \omega_{d-1} \left[y(X) \right]^{(2-n-m-d)/2} = 4C_{n,m} \omega_{d-1} \left[y(X) \right]^{(2-k-m)/2}. \quad (9)
\]

Therefore, \(\lim[y(X)]^{m+k-2} \nu_1(X) = 0\) as \(X \to \sigma\) through \(T_{\delta_2}\). Thus we may prove
Theorem 1 for \(u_2(X) = u(X) - u_1(X) \). For \(X \in T_{\delta_1} \), let \(B_{r,X} = \{ Z : Z \in \sigma_1, |X - Z| < r \} \). We may equally well define \(u_2(X) \) by \(u_2(X) = \int_{B_{\sqrt{\gamma(X)}}} g_a(X - Z) \, dZ \). For \(X \in T_{\delta_1} \), define \(W(X) = Y(X)/\gamma(Y) \). For \(Z \in \sigma_1 \), let \(Q_Z = P_Z - Z \) (that is, translate \(P_Z \) to the origin) be the tangent space to \(\sigma_1 \) at the point \(Z \). Let

\[
D_{\delta}^* = \langle \langle y(X), Z(X), W(X) \rangle | X \in T_{\delta}^*, 0 < \delta < \delta_2 \rangle.
\]

\(D_{\delta}^* \) is an \(n \)-dimensional subset of \(R \times \sigma_1 \times S^{(a-1)} \). Note that \(W(X) \) is perpendicular to \(Q_Z(X) \). Therefore, the vector \(W(X) \) is bound by the above relation and thus has \(k - 1 \) degrees of freedom. The transformation \(\langle y, Z, W \rangle \) of \(X \in T_{\delta}^* \) into \(D_{\delta}^* \) defined by \(y = y(X), Z = Z(X), W = W(X) \) is a diffeomorphism.

Define the functions \(u^*, v^* \) from \(D_{\delta}^* \) into \(R \) by \(u^*(y, Z, W) = y^{k+m-2} \). \(u_1(X(y, Z, W)) \) and \(v^*(y, Z, W) = y^{k+m-3}v(X(y, Z, W)) \). By the homogeneity of the kernel \(g_a \) (order \(2 - n - m \)), we have

\[
v^*(y, Z, W) = y^{k+m-2} \int_{P_z(x)} g_a(X - \lambda) \, d\lambda = y^{-d} \int_{P_z(x)} g_a \left(\frac{X - \lambda}{y} \right) \, d\lambda = y^{-d} \int_{P_z(x)} g_a \left(\frac{1}{y} [(X - Z) - (\lambda - Z)] \right) \, d\lambda = \int_{Q_z(x)} g_a [W - \eta] \, d\eta.
\]

(10)

Note that \(v^* \) only depends on \(Z, W \). We shall, therefore, write \(v^*(y, Z, W) \) as \(v^*(Z, W) \).

For \(0 < \delta < \delta_2 \), let \(D_{\delta} = \overline{D_{\delta}^*} \). For \(X \in T_{\delta_2} \), define

\[
\sigma(X) = (B_{\sqrt{\gamma(X)}}) \cap Z(X) = \{ U | U = \eta / y, \eta \in B_{\sqrt{\gamma(X)}}, x - Z(X) \},
\]

where \(B_{r,X} - Z(X) \) is the translation of \(B_{r,X} \) by \(-Z(X)\). Let \(\{ y_i, Z_i, W_i \}_{i=1}^\infty \) be a sequence with the property

\[
\lim_{i \to \infty} y_i = 0, \quad \lim_{i \to \infty} Z_i = Z_0, \quad \lim_{i \to \infty} W_i = W_0.
\]

We shall prove that \(\lim_{i \to \infty} u^*(y_i, Z_i, W_i) = v^*(Z_0, W_0) \).

\[
u^*(y, Z, W) = y^{k+m-2} \int_{B_{\sqrt{\gamma(X)}}} g_a(X - \lambda) \, d\lambda = y^{-d} \int_{B_{\sqrt{\gamma(X)}}} g_a \left(\frac{X - \lambda}{y} \right) \, d\lambda = y^{-d} \int_{B_{\sqrt{\gamma(X)}}} g_a \left(\frac{(X - Z) - (\lambda - Z)}{y} \right) \, d\lambda = \int_{\sigma(X)} g_a [W - \eta] \, d\eta.
\]

By definition, the surface \(\sigma(X, W, W) \) approaches \(Q_{Z_0} \) in \(C^\infty \) as \(i \to \infty \). Furthermore, \(W_0 \) is normal to \(Q_{Z_0} \) and \(W_0 \) is of unit length, so that

\[
|g_a(W_0 - \eta)| < 2(1 + |Z_0 - \eta|^2)^{(2-n-m)/2}
\]

which is an integrable function over \(Q_{Z_0} \). Therefore, by the dominated convergence theorem, \(\lim_{i \to \infty} u^*(y_i, Z_i, W_i) = v^*(Z_0, W_0) \). We may now extend \(u^* \) to \(D_{\delta_2} \) as a continuous function. Since \(D_{\delta_2} \) is compact, \(u^* \) is uniformly continuous on \(D_{\delta_2} \). This proves the theorem for \(m + k > 3 \).

Case 2 \((k = 2, m = 0)\). Fix a positive \(\delta_3, \delta_3 < \delta_2 \), so that for \(X \in T_{\delta_3} \) we have

\[
|\text{grad} u_{n,a}(X) + \omega_{d-1} W/y| < \varepsilon/2\gamma(Y).
\]
Define $\sigma^* = \{X | X \in \mathbb{R}^n, \text{dist}(X, \sigma) = \delta_3\}$ and $b = \max_{X \in \sigma^*} |u_{\sigma^*} - \ln \delta_3|$. Clearly b exists since σ^* is compact. Let $\delta_0 = \min(\delta_3, \exp(-2b/e))$. Define the function A from T_{δ_i} to σ^* by $A(X) = Z(X) + \delta_3 W(X)$. For $X \in T_{\delta_i}$,

\[
|u_{\sigma^*}(X) + \omega_{d-1} \ln y(X)| \leq |u_{\sigma^*}(A(X)) + \omega_{d-1} \ln \delta_3| + \left| \int_{A(X)}^{X} \left(\text{grad } u_{\sigma^*}(\eta) + \omega_{d-1} \frac{W(\eta)}{y(\eta)} \right) \cdot d\eta \right|
\]

\[
< b + \int_{y(X)}^{\delta_3} \frac{e}{2t} dt < b - \frac{e}{2} \ln y(X) < -e \ln y(X).
\]

This completes the proof of Theorem 1.

2.1. Elementary condition numbers. It is difficult to provide a direct construction of a harmonic realization of every set of condition numbers. We shall first realize condition numbers which satisfy stronger conditions than the inequalities of (1). In addition, we shall always assume, with no loss of generality, that the domains in question are connected, i.e., $R_0 = 1$. We term nonnegative integers $1, R_1, R_2, \mu_0, \mu_1, \mu_2, M_1, M_2$, elementary condition numbers if they satisfy the following equation.

\[
\mu_0 = 1, \quad R_2 = 0, \quad \mu_1 < R_1.
\]

Theorem 2. Suppose $1, R_1, R_2, \mu_0, \mu_1, \mu_2, M_1, M_2$ is a set of elementary condition numbers. Then there exists a function, u, and a domain, Ω, which comprise a harmonic realization of the numbers $1, R_1, R_2, \mu_0, \mu_1, \mu_2, M_1, M_2$.

The proof of Theorem 2 is entirely constructive. The function, u, will be essentially the electrostatic potential of a charged arc, γ. The geometric form of γ will depend upon the integer M_1.

We shall construct Ω by determining its boundary. The tools used to do this are essentially analytic, but underlying the analysis are choices which depend on the elementary condition numbers which are to be realized.

2.2. Standard approximation. Lemma 1 and its corollaries assert that the character of a n.d. critical point remains unchanged under small perturbations.

Lemma 1. Suppose Ω is a bounded open subset of \mathbb{R}^n and u is a real-valued function in the class $C^2(\Omega)$. Moreover, assume that u has exactly one critical point, P, in Ω; P is contained in Ω and is n.d. of index k. If u_1, u_2, \ldots is a sequence of real-valued functions in $C^2(\Omega)$ which converges to u in C^2 uniformly on Ω, then there exists a number, N, such that for each $i > N$, u_i has exactly one critical point, P_i; P_i is n.d. of index k and $\lim_{i \to \infty} P_i = P$.

Proof. First use the inverse function theorem to solve the equation $\text{grad}(u_i(P)) = 0$ near P. This is always possible for i sufficiently large because P is a n.d. critical point of u and the convergence of the functions u_i in C^2. Moreover, this solution, P_i, is unique within some fixed neighborhood V of P. Since $\overline{\Omega} - \hat{V}$ is compact and convergence of u_i is uniform in C^2, for i is sufficiently large the functions, u_i, cannot have critical points in $\overline{\Omega} - \hat{V}$. This completes the proof.
Corollary 1. Suppose \(\Sigma \) is a compact \(n \)-manifold, perhaps with a boundary. Let \(u \) be a n.d. function on \(\Sigma \) with critical points \(P_1, \ldots, P_M \); \(P_j \) does not belong to the boundary of \(\Sigma \), \(j = 1, \ldots, M \). Suppose \(k_j = \text{index of } P_j \) for \(j = 1, \ldots, M \). If \(u_1, u_2, \ldots \) is a sequence of functions with \(u_i \) in class \(C^2 \) on \(\Sigma \) which converges uniformly to \(u \) in \(C^2 \), then there exists a number, \(N \), such that \(i > N \) implies \(u_i \) has exactly \(M \) critical points, \(P_j^i \); \(P_j^i \) is n.d. with index \(k_j \) and \(\lim_{i \to \infty} P_j^i = P_j, j = 1, \ldots, M \). This corollary follows by applying Lemma 1 in local coordinates neighboring each critical point \(P_j \).

Corollary 2. Suppose \(\Sigma \) is as prescribed in Corollary 1. Let \(\psi \) be an imbedding of \(\Sigma \) into \(\mathbb{R}^q \); \(\psi \) is of class \(C^2 \). Let \(\Sigma' = \psi(\Sigma) \). Suppose \(u \) is a function of class \(C^2 \) defined in a \(q \)-dimensional neighborhood of \(\Sigma' \). Suppose the restriction of \(u \) to \(\Sigma' \) is n.d. with critical points, \(P_1, \ldots, P_M \) with index of \(P_j = k_j \). Moreover, suppose \(\psi^{-1}(P_j) \) does not belong to the boundary of \(\Sigma, j = 1, \ldots, M \). Let \(\psi_1, \psi_2, \ldots \) be a sequence of \(C^2 \) imbeddings of \(\Sigma \) into \(\mathbb{R}^q \) which converges to \(\psi \) uniformly in \(C^2 \). Let \(\Sigma_i = \psi_i(\Sigma) \). Then there exists a number \(N \) such that for \(i > N \) the restriction of \(u \) to \(\Sigma_i \) has exactly \(M \) critical points, \(P_j^i \). Each \(P_j^i \) is n.d. with index \(k_j \), and \(\lim_{i \to \infty} P_j^i = P_j, j = 1, \ldots, M \).

Define a \(C^k \) family of functions \(\mathcal{F} \) to be any collection of functions indexed by a real parameter such that each function \(f_\epsilon \) is of class \(C^k \) and each derivative of \(f_\epsilon \) of order \(k \) or less is a jointly continuous function of the \(n + 1 \) variables, \(x_1, x_2, \ldots, x_n, \epsilon \).

Corollary 3. Suppose \(\mathcal{U} \) is a \(C^2 \) family of functions indexed by \(\epsilon, 0 < \epsilon < 1 \). Assume each \(u_\epsilon \) is defined in a neighborhood of the origin in \(\mathbb{R}^n \) and that the origin is an ordinary point of \(u_0 \). Let \(S \) be any compact submanifold of \(\mathbb{R}^n \) of class \(C^2 \). Define \(L \) a real-valued linear function on \(\mathbb{R}^n \) by \(L(X) = \langle \text{grad } u_0(0) \rangle \cdot X \). Let \(S_\epsilon = \{ \text{set } \epsilon S \text{ for } \epsilon \text{ a positive number. If } L \text{ is n.d. on } S \text{ with type numbers } J_0, \ldots, J_k, \text{ then there exists a positive number } \epsilon_0 \text{ such that for each } \epsilon, 0 < \epsilon < \epsilon_0, \text{ the restriction of } u_\epsilon \text{ to } S_\epsilon \text{ is n.d. and has type numbers } J_0, \ldots, J_k. \}

Proof. Define the \(C^2 \) family of functions \(\mathcal{F} \) with \(f_\epsilon \) defined in a neighborhood of the origin in \(\mathbb{R}^n \) for positive \(\epsilon \) by \(f_\epsilon(X) = (1/\epsilon)(u_\epsilon(\epsilon X) - u_0(0)) \). It is clear that \(f_\epsilon \) tends to \(L \) in \(C^2 \) uniformly on compact subsets of \(\mathbb{R}^n \) as \(\epsilon \to 0^+ \). In particular, \(f_\epsilon \to L \) in \(C^2(S) \) uniformly. Therefore, by Corollary 1 of Lemma 1, there exists an \(\epsilon_0 \) such that for all positive \(\epsilon, \epsilon < \epsilon_0 \), the type numbers of \(f_\epsilon \) on \(S \) are identical to those of \(L \) on \(S \). On the other hand, for any fixed \(\epsilon \), the function \(f_\epsilon \) differs from \(u_\epsilon \) by a dilation, subtraction of a constant and multiplication by another constant. Therefore, the type numbers of \(u_\epsilon \) on the set \(\epsilon S \) must be identical to those of \(f_\epsilon \) on \(S \). This proves the corollary.

2.3. Construction of \(u \) for \(M_1 \neq 0 \). A harmonic function \(u \), defined on an open subset of \(\mathbb{R}^3 \), will be found which has \(2M_1 \) critical points, half having index 1 and the remainder having index 2. An arc is a one-dimensional \(C^\infty \) submanifold of \(\mathbb{R}^3 \) with boundary, which is the homeomorphic image of a closed interval. We often shall use the same symbol to denote the arc, the point set and its parametric
representation. We parametrize an arc γ by $\gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t))$, $t \in [-a, a]$. Fix the arc γ and let $u^\gamma(X)$ be the function defined by

$$u^\gamma(X) = -\int_\gamma g(X - Z) \, dZ, \quad X \in \mathbb{R}^3 - \{\gamma\}.$$

We require that the arc γ satisfy the following conditions.

1. $\gamma_3 = 0$ and $\gamma(0) = 0$
2. γ_1 is even and γ_2 is odd
3. $\gamma'_i(t) > 0$ for $0 < t < a$
4. There are real numbers q_i, q_i^* with $0 < q_i < q_i^* < q_{i+1} < \gamma_1(a)$, $i = 1, 2, \ldots, M_1$, such that $u^\gamma(q_i, 0, 0) < -2$ and $u^\gamma(q_i^*, 0, 0) > -1$.

It is clear that an arc γ may be found such that the conditions (a), (b), and (c) of (12) are satisfied. Theorem 1 implies that $u^\gamma \to -\infty$ as $X \to Z$, $Z \in \hat{\gamma}$ where $\hat{\gamma}$ is the interior of γ. Therefore, condition (d) of (12) may be satisfied by an arc like the one shown in Figure 2. Note that $\gamma_2 \neq 0$ for $t \neq 0$. It should be pointed out that the conditions (a) and (b) are designed to avoid unnecessary complications, whereas (c) and (d) are essential. Violation of (c) introduces critical points that are extraneous.

The function u^γ has the following symmetry property.

$$u^\gamma(x_1, x_2, x_3) = u^\gamma(x_1, -x_2, x_3) = u^\gamma(x_1, x_2, -x_3).$$

By (12c), a function f_γ can be defined on $[0, \gamma_1(a)]$ by

$$f_\gamma(\gamma_1(t)) = \gamma_2(t), \quad t \in [0, a].$$

By Theorem 1, it is possible to choose a positive number $\delta_1 < q_1$ such that for $X = (x_1, x_2, x_3)$, $0 < x_1 < \delta_1$, $|x_2| < f_\gamma(x_1)$ and $x_3 = 0$,

$$|\text{grad}(u^\gamma(X))| > 1.$$
Let a_1 be a number such that $a_{M_1+1} < a_1 < \gamma_1(a)$. Let D and D^* be the sets defined by
\[D = \{ x \in \mathbb{R}^3, \delta_1 < x_1 < a_1, |x_2| < f_\gamma(x_1), x_3 = 0 \}, \]
\[D^* = \{ x \in \mathbb{R}^3, 0 < x_1 < a_1, |x_2| < f_\gamma(x_1) \} \]
and h be the restriction of u^γ to the set $\{ x \in \mathbb{R}^3, \delta_1 < x_1 < a_1, x_2 = 0 = x_3 \}$. By Lemma 6.2 of [3], it is possible to choose a real number β such that
\[|\beta| < \frac{1}{2} \left(\frac{1}{1 + a_1} \right) \]
and
\[h + \beta x_1 \text{ is n.d.} \]
Let $p_1 < p_2 < \cdots < p_K$ be the critical points of the function $h + \beta x_1$. By (12d) and (16a), $K > 2M_1$. Decrease a_1, if necessary, so that the function $h + \beta x_1$ has exactly $2M_1$ critical points in (δ_1, a_1) and a_1 is not a critical point. By Theorem 1, p_1 is a maximum of $h + \beta x_1$. Therefore
\[p_i \text{ is a maximum if } i \text{ is odd and a minimum if } i \text{ is even.} \]
Let
\[P_i = (p_i, 0, 0) \]
and
\[b = \sup_{x \in D} \left\{ \left| \frac{\partial^2 u^\gamma}{\partial x_2^2}(x) \right| \right\}. \]
Then b exists since (5) and (12c) imply that
\[\left(\frac{\partial^2 u^\gamma}{\partial x_2^2}(x) \right) \to -\infty \text{ as } x \to \gamma \text{ through } D. \]
Define the function ψ by $\psi(x) = (1 + |b|)(x_2^2 - x_3^2)/2$ and let
\[u(X) = u^\gamma(X) + \beta x_1 + \psi(X). \]
The function $u(X)$ has the following properties.
\[(22) (a) \text{ } u \text{ is defined and harmonic on } D^*. \]
\[(b) \text{ The asymptotic representation which Theorem 1 asserts for } u^\gamma \text{ and its derivatives is valid for } u. \]
\[(c) \text{ } u \text{ has the symmetry properties of } u^\gamma. \]
\[(d) (i) \left(\frac{\partial^2 u}{\partial x_2^2}(X) \right) < -1, X \in D, \]
\[(ii) \left(\frac{\partial^2 u}{\partial x_2^2}(X) \right) > a_2 > 0, X \in D^* \text{ and } x_3 = 0. \]
\[(e) (i) \text{ sgn}(\partial u/\partial x_2)(X) = -\text{sgn}(x_2), X \in D, \]
\[(ii) \text{ sgn}(\partial u/\partial x_3)(X) = \text{sgn}(x_3), X \in D^*. \]
\[(f) \text{ The only critical points of } u \text{ in } D^* \text{ are the } p_i \text{ and each } p_i \text{ is n.d. with index 2 or } 1 \text{ according as } i \text{ is odd or even, respectively.} \]
It should be noted that (c) and (d) can be used to verify (e). Moreover, (e) implies (f).

2.4. Construction of Ω for $M_1 \neq 0$. We adopt the notation of the preceding section with the following exception. The symbols P_i, p_i are no longer defined for $i > 2M_1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In this section a simple plane closed curve, γ, of the topological type of the circle will be constructed. The curve γ will lie in $W = \{ X | X \in D^*, x_3 = 0 \}$. In addition, the curve γ will satisfy the following. (i) γ is of class C^∞, (ii) γ surrounds the points P_i, $i = 1, 2, \ldots, 2M_1$, (iii) the function u restricted to γ has exactly two critical points, P_0 and P_{2M_1+1}, (iv) of these two points, only P_0 is entrant in the appropriate sense. The asymptotic estimates of u near the curve γ, obtained in Theorem 1, will be used to accomplish this construction. The nontrivial part of the curve γ will, in fact, be the solution of a certain initial value problem which, for notational convenience, is set in the complex plane. Therefore, let W be identified with a region in the complex plane with $\xi = x_1 + ix_2$.

Define the function θ_1, mapping $W - \bigcup_{2M_1} P_j$ into the unit circle S^1, as follows.

$$\theta_1(\xi) = \frac{\text{grad}(u(\xi))}{|\text{grad}(u(\xi))|}$$

where $\text{grad}(u)$ is taken to mean $\partial u / \partial x_1 + i(\partial u / \partial x_2)$. Define the function $\theta(\epsilon, t, t_0, \xi)$ mapping $R^2 \times \{ \xi | \xi \in W, |\text{grad}(u(\xi))| > 1 \}$ into S^1 by the following:

$$\theta(\epsilon, t, t_0, \xi) = e^{-t} \sin^{-1}[\frac{2t}{(1 + r^2)|\text{grad}(u(\xi))|} - 1]$$

for $|t| < t_0$.

For the time being it will be assumed that t_0 is infinite and therefore the function $\theta(\epsilon, t, t_0, \xi)$ will be independent of t_0 and ϵ. Define the function v_δ as follows.

$$(d/dt)(v_\delta) = i\theta(v_\delta)\theta(\epsilon, t, \infty, v_\delta), \quad v_\delta(0) = \delta.$$

Obviously the path v_δ is parameterized by arc length. It is a straightforward matter to compute the following.

$$\frac{d}{dt}u(v_\delta(t)) = \text{Re}\left(\frac{\text{grad}(u)}{(d/dt)v_\delta}\right) = -\text{Re}\left(i\theta, \theta(\epsilon)\right) \cdot |\text{grad}(u(\xi))|$$

Therefore

$$u(v_\delta(t)) = u(\delta) + \frac{\int_0^t 2s ds}{(1 + s^2)^2} = u(\delta) + 1 - \frac{1}{1 + t^2}.$$

It is useful to observe that v_δ is a level curve of a function which differs from u by a bounded quantity. By Theorem 1, $u(X) \to -\infty$ and $\text{grad}(u) \to 2Y/y^2$ as X approaches γ. Therefore, the tangent vectors to v_δ, at X, and γ, at $Z(X)$, are essentially parallel. Let $T^* = \inf\{ t > 0 | v_\delta(t) \in W \}$. It is clear from the preceding remarks that, for δ sufficiently small, T^* exists and that v_δ approaches γ in C^1 uniformly for $0 < t < T^*$ as $\delta \to 0^+$. Therefore, it is possible to find small positive numbers δ_1, δ_2 such that the following conditions are satisfied.

(28) (a) $\text{Re}(v_\delta(t))$ is 1-1 for $\delta_1 < t < T^*$.
(b) $\text{Im}(v_\delta(t))$ is positive for $0 < t < T^*$.
(c) $\delta_2 < \delta_1$.
(d) δ_1 depends on δ_2 and, due to C^1 convergence of v_δ to γ, $\delta_1 \to 0^+$ as $\delta_2 \to 0^+$.

Now define $t_0 > 0$ by $\text{Re}(v_\delta(t_0)) = P_{2M_1}$. That t_0 is well defined follows from (28a) and (28d). We now extend the definition of $\theta(\epsilon, t, t_0, \xi)$ for $t > t_0$. For $t_0 < t < t_0 + \epsilon$, let $\theta(\epsilon, t, t_0, \xi)$ satisfy

(29) (a) $\text{Im}[\theta(\epsilon, t, t_0, \xi)\theta(\xi)] < 0$ with equality at $t = t_0 + \epsilon$,

Moreover we require that for $t > t_0 + \epsilon$, $\theta(e, t, t_0, \xi) = -\delta_1(\xi)$. By further restricting δ_2, if necessary, it is possible to find a function $\theta(e)$ which satisfies (24), (29) and is of class C^∞, for every $\epsilon > 0$. Let

\[\epsilon = \frac{1}{2} \left[\min(a_1 - p_{2M}, \text{Im}(v_{\delta_1}(t_0))/2) \right] \]

and $t_1 = t_0 + 2\epsilon$. Define $\hat{\nu}$ for $0 < t < t_1$ by

\[(d/dt)\hat{\nu}(t) = i \cdot \theta_1(\hat{\nu}) \cdot \hat{\theta}(e, t, t_0, \hat{\nu}), \quad \nu(0) = \delta_2. \quad (30) \]

Extend $\hat{\nu}$ for $|t| < t_1$ by $\hat{\nu}(-t) = \hat{\nu}(t)$. By (29) and (22e(i)), $u(\nu(t))$ increases for $0 < t < t_1$. Therefore this section of $\hat{\nu}$ is an arc. By symmetry, $\hat{\nu}(-t_1, 0)$ is an arc. By the choice of δ_2 and t_1, these two branches of $\hat{\nu}$ intersect at only one point, $\hat{\nu}(0) = \delta_2 = p_0$. Therefore, $\hat{\nu}([-t_1, t_1])$ is a continuous arc, and by (25) is in fact of class C^∞. Extend $\hat{\nu}$ as shown in Figure 4 to be a C^∞ closed curve of the topological type of the circle. Call this curve ν. Let $p_{2M+1} = \nu \cap \{ \xi \subset R^3 | \xi > p_0 \}$.

(31) By (29) and (22e(i)), the only critical points of the restriction of u to ν are p_0, the minimum, and p_{2M+1}, the maximum. At both points the gradient of u lies on the positive, real axis.

Figure 4. Drawn for $M_1 = 3$

In the succeeding discussion the complex notation is dropped, but X is still constrained to lie in the $x_1 - x_2$ plane. Define W' to be the closed bounded subset of the plane whose boundary is the closed curve ν. Select μ_1 distinct points X'; X' belongs to $W' - \{ \cup_j P_i \}$, $i = 1, \ldots, \mu_1, j = 1, \ldots, 2M$. For positive numbers δ_i define v_{δ_i} to be circles of radius δ_i, centered at the points X', $i = 1, \ldots, \mu_1$. Define $\hat{u} = u$ restricted to W. For positive numbers δ_j', let $v_{\delta_j'}$ be the circle of radius δ_j' centered at the point P_{2j-1}, $j = 1, \ldots, R_1 - \mu_1$. Let $\nu = \{ \nu \cup v_{\delta_i} \cup v_{\delta_j'} \}, i = 1, \ldots, \mu_1, j = 1, \ldots, R_1 - \mu_1$. Let W^* be the closed bounded connected region of the plane whose boundary is ν^*. We term critical points of \hat{u} restricted to ν^* to be entrant or emergent with respect to the region W^*.

Since X', $i = 1, 2, \ldots, \mu_1$, are not critical points, according to Corollary 3 of Lemma 1, it is possible to choose the numbers, δ_i, δ_j', so small that \hat{u} restricted to v_{δ_i} is n.d. and has precisely one entrant critical point, P_i, with index of $P_i = 1$; $v_{\delta_j'}$ is emergent, $i = 1, \ldots, \mu_1, j = 1, \ldots, R_1 - \mu_1$. It is clear from (31) that the restriction of \hat{u} to ν is n.d. and has precisely one entrant critical point, namely $P_0 = \langle p_0, 0, 0 \rangle$, with index of $P_0 = 0$.

We now return to a 3-dimensional setting, and define $\Sigma = \{ X \text{ belongs to } R^3 | \langle x_1, x_2, 0 \rangle \text{ belongs to } \nu \}$. Define $\Omega^* = \{ X \text{ belongs to } R^3 | \langle x_1, x_2, 0 \rangle \text{ belongs to } W^* \}$. We now term critical points of the restriction of u to Σ to be entrant or emergent with respect to the region Ω^*.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
CRITICAL POINTS OF HARMONIC FUNCTIONS

It is clear from (22e(i)) that every critical point of the restriction of u to Σ lies on the curve η^*, and from (22d(ii)), together with the preceding discussion, that the restriction of u to Σ is n.d. Moreover, the entran critical points of the restriction of u to Σ correspond in position and index to the entran critical points of the restriction of \hat{u} to η^*.

Define $\Sigma = \{X \in \Sigma | x_3^2 < 1\}$. Let f_1 be a real-valued function defined on W^* subject to the following conditions.

(32) (a) The function f_1 is continuous on W^*.
(b) $f_1 \equiv 1$ on η^*.
(c) For $j = R_1 - \mu_1 + 1, \ldots, R_1 - \mu_1 + \mu_2, f_1(P_{2j-1}) < 0$.
(d) For $j = 1, \ldots, M_1, f_1(P_2) > 0$.
(e) For $j = R_1 - \mu_1 + \mu_2 + 1, \ldots, M_1, f_1(P_{2j-1}) > 0$.
(f) $\Sigma \cup \{\text{graph of } f_1 \}$ is a C^∞ surface with boundary and it is homeomorphic to W^*.

Let g_1 be a real-valued function defined on W^* subject to the following conditions.

(33) (a) The function g_1 is continuous on W^*.
(b) $g_1 \equiv -1$ on η^*.
(c) $g_1 < \min(0, f_1)$.
(d) The graph of $f_1 \cup g_1 \cup \Sigma$ is a C^∞ manifold of dimension 2 of the topological type of the connected sum of R_1 tori.

Define $f_\varepsilon = \varepsilon f_1, g_\varepsilon = \varepsilon g_1$, for ε any positive number. Let \tilde{D} be a compact subset of W^* which contains every critical point of u which is contained in W^*. We may also suppose that \tilde{D} is a 2-cell with smooth boundary. Define ψ_ε, a class C^2 imbedding of \tilde{D} into R^3, as follows.

$$\psi_\varepsilon(\langle x_1, x_2 \rangle) = \langle x_1, x_2, \varepsilon f_1(\langle x_1, x_2 \rangle) \rangle.$$

By Lemma 1, Corollary 2, for every positive $\varepsilon < \varepsilon_0$, the restriction of u to $(\psi_\varepsilon(\tilde{D}))$ has a finite critical set, $P_i, i = 2(R_1 - \mu_1) + 1, \ldots, 2M_1$, or $i = 2j, j = 1, \ldots, R_1 - \mu_1$. Moreover the index($P_i$) = index($P_i$) and $\lim_{\varepsilon \to 0} P_i = P_i$.

We adopt the following notational convention. If V is a vector quantity equal to $\langle v_1, v_2, v_3 \rangle$, $(V)_i = v_i, i = 1, 2, 3$. By (32a), $\text{sgn}(P_i^*) = \text{sgn}(f_1(\langle P_i \rangle, (P_i)_2))$. Let

$$\Omega_\varepsilon = \{X \in \Omega^* | \varepsilon g_1(\langle x_1, x_2 \rangle) < x_3 < \varepsilon f_1(\langle x_1, x_2 \rangle)\}.$$

Let $\Sigma_\varepsilon = \text{boundary of } \Omega_\varepsilon$. Let $\Sigma_\varepsilon^* = \text{the graph of the function } \varepsilon f_1 \text{ over the region } W^*$. Let $\Sigma_\varepsilon = \text{the graph of the function } \varepsilon g_1 \text{ over the region } W^*$ and $\Sigma_\varepsilon = \{X \in \Sigma_\varepsilon | |x_3| < \varepsilon\}$. By (22e(ii)) and the definitions of Σ_ε^* and Σ_ε, if X is a critical point of the restriction of u to $\Sigma_{\varepsilon'}$, then $\text{sgn}(\text{grad}(u) \cdot N(X)) = \text{sgn}(x_3)$.

It then follows that only the points $P_{2j-1}^*, j = R_1 - \mu_1 + 1, \ldots, R_1 - \mu_1 + \mu_2, P_0$ and $P_i^*, i = 1, \ldots, \mu_1$, are entran critical points of the restriction of u to $\Sigma_{\varepsilon'}$. Moreover, the points, $P_{2j-1}^*, j = R_1 - \mu_1 + 1, \ldots, R_1 - \mu_1 + \mu_2$, each have index = 2. It then follows that u and Ω_ε comprise a harmonic realization of the elementary condition numbers, $1, R_1, R_2, \mu_0, \mu_1, \mu_2, M_1, M_2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
2.5. Harmonic realization for $M_1 = 0$. Suppose $M_1 = 0$; then (1) and (11) give
\[\mu_2 = M_2 = R_1 - \mu_1 = 0. \] (34)

Let u be defined by $u(X) = x_2$. Let W^* be the unit disc in the $x_1 - x_2$ plane
\[\left\{ X \mid X \in R^2 \land (x_2 - (1/i + 1))^2 < (i + 1)^{-4} \right\}. \]
Define a function f on W^*, subject to the following conditions.

(a) f is continuous on W^*.
(b) $f(\text{boundary of } W^*) \equiv 0$.
(c) $f(W^*) > 0$.
(d) graph of $f \cup$ graph of $-f$ is a C^∞ manifold homeomorphic to the connected sum of R_1 tori.

Let Ω be $\{ X \in R^3 \mid \langle x_1, x_2 \rangle \in W^* \land |x_3| < f(\langle x_1, x_2 \rangle) \}$. The pair u, Ω provides a harmonic realization of all sets of elementary condition numbers where $M_1 = 0$.

The function u and domain Ω constructed in §§2.3 and 2.4 realize any set of elementary condition numbers where M_1 is greater than 0. The special case of providing the harmonic realization of elementary condition numbers with M_1 equal to 0 has just been given in §2.5. This completes the proof of Theorem 2.

3.0. In this section techniques will be developed which make it possible to modify the limited examples constructed in §2.1. These techniques will suffice to show that any set of condition numbers may be realized by an appropriate modification of the harmonic realization of a certain set of elementary condition numbers. Moreover, the necessary modifications are local in nature in that they consist of local changes to the boundary of Ω or to the function u.

3.1. Theorem 3. Let Ω be a bounded open subset of R^3 which contains the origin. Let \mathcal{F} be a C^2 family of functions defined for $|\varepsilon| < 1$ and X contained in a neighborhood of $\overline{\Omega}$. Define the C^2 family of functions \mathcal{F}_0 by $u_\varepsilon(X) = \varepsilon/|X|$ for $\varepsilon > 0$ and $X \in R^3$, $|X| \neq 0$. Suppose that $|\text{grad}(f_0)| > 0$ for all X in $\overline{\Omega}$ where f_0 is the member of \mathcal{F}.
CRITICAL POINTS OF HARMONIC FUNCTIONS

151

corresponding to \(e = 0 \). Define the \(C^2 \) family of functions \(\mathcal{V} \) by \(v_\epsilon(X) = f_\epsilon(X) + u_\epsilon(X) \), for \(X \) and \(\epsilon \), simultaneously satisfying the conditions imposed in the definitions of \(\mathcal{U} \) and \(\mathcal{F} \). Then there exists a positive number \(\epsilon_0 \) such that for every \(\epsilon \), \(0 < \epsilon < \epsilon_0 \), the following conditions hold.

1. The function \(v_\epsilon \) has exactly one critical point \(P_\epsilon \) in \(\Omega \) minus the origin.
2. The point \(P_\epsilon \) is a nondegenerate critical point of \(v_\epsilon \) with \(\text{index}(P_\epsilon) = 2 \).
3. \(\lim_{\epsilon \to 0^+} P_\epsilon'(\epsilon) = \frac{\text{grad}(f_0(0))}{|\text{grad}(f_0(0))|^{1/2}} \).

Proof. In the following paragraph definitions will be made for the subscript \(i = 0, 1 \). Define \(s^\epsilon_i = \{ X \in \mathbb{R}^3 \mid |X| = \epsilon^{(3 - \delta)/5} \} \). Let \(A^\epsilon \) be the closed bounded subset of \(\mathbb{R}^3 \) with boundary \(\cup_i s^\epsilon_i \). Points of \(s^\epsilon_i \) shall be termed entrant or emergent with respect to the region \(A^\epsilon \).

By the hypotheses, it is possible to find positive numbers \(a \) and \(\Delta \) such that for \(|\epsilon| < \Delta \) and \(X \in \Omega \), \(|\text{grad}(f_\epsilon)| > a \). On the other hand,

\[
\text{grad}(u_\epsilon) = -\epsilon A/|A|^{(3 - \delta)/5}. \tag{36}
\]

It follows therefore that for \(|X| > \epsilon^{2/5} \),

\[
|\text{grad}(u_\epsilon)| < \epsilon^{1/5}. \tag{37}
\]

Define the positive number \(\Delta_1 \) according to

\[
\Delta_1 = \min\{\Delta, (a/2)^5\}. \tag{38}
\]

Combining the preceding three equations, it follows that if \(|X| > \epsilon^{2/5} \) and \(0 < \epsilon < \Delta_1 \), then

\[
|\text{grad}(v_\epsilon)| > a/2. \tag{39}
\]

Define the constant \(M \) as follows:

\[
M = \sup\{|\text{grad}(f_\epsilon)| \mid X \in \Omega \text{ and } |\epsilon| < \Delta_1\}. \tag{40}
\]

On the other hand, by (36), it follows that if \(0 < |X| < \epsilon^{3/5} \) then

\[
|\text{grad}(u_\epsilon)| > \epsilon^{-1/5}. \tag{41}
\]

Choose \(\Delta_2 \) as follows:

\[
\Delta_2 = \min\{\Delta_1, (2M)^{-5}\}. \tag{42}
\]

It follows then from (40), (41), (42), that if \(0 < \epsilon < \Delta_2 \) and \(|X| < \epsilon^{3/5} \), then

\[
|\text{grad}(v_\epsilon)| > M. \tag{43}
\]

(39) and (43) imply that for \(0 < \epsilon < \Delta_2 \), the critical points of the function \(v_\epsilon \) lie exclusively in the set \(A^\epsilon \).

In the following paragraph, the index \(i \) may take on the values 0 and 1. By the definition of the family \(\mathcal{U} \), for every fixed \(\epsilon > 0 \), the function \(u_\epsilon \) is constant on any sphere centered at the origin, and in particular on the spheres \(s^\epsilon_i \). Therefore \(v_\epsilon | s^\epsilon_i \) will possess exactly the same set of type numbers as will \(f_\epsilon | s^\epsilon_i \). It follows from Corollary 3 of Lemma 1 that for every sufficiently small positive \(\epsilon \), the type numbers of \(f_\epsilon | s^\epsilon_i \) are given by

\[
\mu_0^\epsilon = \mu_2^\epsilon = 1, \quad \mu_1^\epsilon = 0. \tag{44}
\]
In the succeeding paragraph, let the index \(j \) assume the values 0, 1, 2. Define the integers \(v_j \) to be the boundary type numbers of \(v_\varepsilon \) on \(s_j^\varepsilon \) and \(y_j \) to be the boundary type numbers of \(v_\varepsilon \) on \(s_j \). It follows from (43) that for \(0 < \varepsilon < \Delta_2 \), the function \(v_\varepsilon \) is emergent on all of the boundary \(s_j^\varepsilon \); therefore, \(v_j = 0 \). On the other hand, (37) guarantees that for each sufficiently small positive \(\varepsilon \), any emergent or entrant critical point of \(f_\varepsilon \) remains respectively an entrant or emergent critical point of \(v_\varepsilon \). From this and Corollary 3 of Lemma 1, it follows that \(y_1^\varepsilon = y_2^\varepsilon = 0, y_0^\varepsilon = 1 \). On the other hand, since \(v_j = 0 \), the boundary type numbers of \(v_\varepsilon \) on \(A^\varepsilon \) are \(\{ y_j \mid j = 0, 1, 2 \} \).

The region \(A^\varepsilon \) is homotopy equivalent to a 2-sphere. Therefore if \(m_j^\varepsilon \) are the interior type numbers of \(v_\varepsilon \) on \(A^\varepsilon \), then for all sufficiently small positive \(\varepsilon \),

\[
\sum_{j=0}^{3} (-1)^j m_j^\varepsilon = 1.
\] (45)

It will now be shown that for sufficiently small positive \(\varepsilon \), the only interior type number of \(v_\varepsilon \) which can be positive is \(m_2^\varepsilon \). First compute \(H v_\varepsilon = H(f_\varepsilon + u_\varepsilon) = \varepsilon W(X)/|X|^3 + H f_\varepsilon = (\varepsilon/|X|)(W(X) + |X|^3 H f_\varepsilon /\varepsilon) \) where \(W(X) \) is the \(3 \times 3 \) matrix \((w_{ij}(X)), \ i, j = 1, 2, 3 \) with entries \(w_{ij}(X) = 3x_i x_j/|X|^2 - \delta_{ij} \). Clearly \(\text{index}(H v_\varepsilon) = \text{index}(W(X) + |X|^3 H f_\varepsilon /\varepsilon) \). By the definition of the region \(A^\varepsilon \), if \(X \) belongs to \(A^\varepsilon \) then \(|X|^3/\varepsilon < e^{1/5} \). A simple computation shows the eigenvalues of the matrix \(W(X) \) are \(-1, -1, +2\), independent of \(X \). Since \(\overline{S} \) is a \(C^2 \) family of functions, it is clear that \(H f_\varepsilon \) is bounded in norm. It must then be true that for all sufficiently small positive \(\varepsilon \), \(\text{index}(H v_\varepsilon) = \text{index}(W(X)) = 2 \), for all \(X \in A^\varepsilon \). This combined with (45) proves parts 1 and 2 of the theorem. Part 3 follows from an easy calculation.

Theorem 4. Suppose \(\Omega \) is a bounded open subset of \(R^3 \) which contains the origin. Let \(\Omega' = \Omega \) minus positive \(x_3 \)-axis and \(d = \{ X \in \Omega \mid x_3 = 0 \} \). Let \(f \) be a function of class \(C^2 \) on a neighborhood of \(\overline{\Omega} \). Define the \(C^2 \) family of functions \(\Omega _\varepsilon \) on \(\Omega' \) by \(u_\varepsilon(X) = \varepsilon/(x_1^2 + x_2^2 + (x_3 - \varepsilon)^2)^{1/2} \) for \(\varepsilon > 0 \). Suppose the restriction of \(f \) to \(d \) has no critical points, and \(\partial f/\partial x_3 < 0 \) at the origin. Define the family \(\overline{\nabla} = \overline{\Omega} + f \). Then there exists a positive number, \(\varepsilon_0 \), such that for \(0 < \varepsilon < \varepsilon_0 \), the function \(v_\varepsilon \) restricted to \(\overline{d} \) has exactly two critical points, \(P_0^\varepsilon, P_1^\varepsilon \), and the following relations are satisfied for \(j = 0, 1 \).

1. \(P_j^\varepsilon \) is a nondegenerate critical point with index(\(P_j^\varepsilon \)) = 2 - \(j \).
2. \(\partial v_\varepsilon/\partial x_3(P_1^\varepsilon) < 0 \) and \(\partial v_\varepsilon/\partial x_3(P_0^\varepsilon) > 0 \).
3. \(\lim_{\varepsilon \to 0} P_j^\varepsilon/\varepsilon^{1/2} = \mathcal{J}((\text{grad } f(\overline{d}))(0))/|\text{grad } f(\overline{d}))(0)|^{3/2} \).

Proof. Let \(\overline{d}^\varepsilon = \{ X \in \varepsilon/|X| \in \overline{d} \} \). Define the transformation \(\overline{\Phi} \) which maps \(\overline{d} \) onto \(\overline{d}^\varepsilon \) by \(\overline{\Phi} = \overline{\Omega}(X) = (x_1/\varepsilon, x_2/\varepsilon, 0) \). Define \(s_0^\varepsilon = \{ X \in \overline{d}^\varepsilon \mid |X| = \varepsilon^{3/2} \}, s_1^\varepsilon = \{ X \in \overline{d}^\varepsilon \mid |X| = \varepsilon^{3/5} \} \) and \(s_2^\varepsilon = \{ X \in \overline{d}^\varepsilon \mid |X| = \varepsilon^{2/5} \} \). Define \(s_0, s_1, s_2 \) by \(s_i = \overline{\Phi}(s_i^\varepsilon), i = 0, 1, 2 \). Define \(A_0^\varepsilon \) to be the closed bounded subset of \(\overline{d} \) with boundary \(s_0^\varepsilon, A_1^\varepsilon \) the closed bounded subset of \(\overline{d} \) with boundary \(s_0^\varepsilon \cup s_1^\varepsilon, A_2^\varepsilon \) the closed bounded subset of \(\overline{d} \) with boundary \(s_1^\varepsilon \cup s_2^\varepsilon, A_3^\varepsilon = \overline{d} - (A_0^\varepsilon \cup A_1^\varepsilon \cup A_2^\varepsilon) \). Define
CRITICAL POINTS OF HARMONIC FUNCTIONS

$A_i = \mathfrak{N}(A_i^*)$. Note that the transformation \mathfrak{N}, the regions s_i, A_j, $i = 0, 1, 2, j = 0, 1, 2, 3$, depend on the parameter ε. However, the assertions of the theorem are only claimed to be true for each sufficiently small fixed positive ε.

Now compute $u_\varepsilon(X)|_\overrightarrow{d}$ in terms of the new coordinate \mathfrak{N}

$$u_\varepsilon(X) = \varepsilon / \left(\varepsilon y_1^2 + \varepsilon y_2^2 + \varepsilon^2 \right)^{1/2} = 1 / \left(y_1^2 + y_2^2 + 1 \right)^{1/2}$$

$$= 1 / \left(1 + |\mathfrak{N}|^2 \right)^{1/2}. \tag{46}$$

(46) demonstrates that $u_\varepsilon(X)$, when expressed in the \mathfrak{N} coordinates, is independent of the parameter ε. For convenience, define the function u on \overrightarrow{d} by

$$u(\mathfrak{N}) = 1 / \left(1 + |\mathfrak{N}|^2 \right)^{1/2}. \tag{47}$$

Define the operators grad_y and H_y as follows. Suppose ψ is a function of class C^2 on \overrightarrow{d}; then $\text{grad}_y(\psi) = (\partial \psi / \partial y_1, \partial \psi / \partial y_2)$. $H_y\psi$ is the 2×2 matrix (ψ_{ij}), $i, j = 1, 2$ such that $\psi_{ij} = \partial^2 \psi / \partial y_i \partial y_j$. Define the operators grad_2 and H_2 on a function ψ of class C^2 on \overrightarrow{d} by $\text{grad}_2 \psi = (\partial \psi / \partial x_1, \partial \psi / \partial x_2)$ and $H_2\psi = (\psi_{ij})$, $i, j = 1, 2$, with $\psi_{ij} = \partial^2 \psi / \partial x_i \partial x_j$. Clearly the following operator identities hold from the definition of grad_2, grad_y, H_2 and H_y.

$$\text{grad}_y = \varepsilon \text{grad}_2. \tag{48}$$

$$H_y = \varepsilon^2 H_2. \tag{49}$$

Define the C^2 family \mathcal{F} by $f_\varepsilon(\mathfrak{N}) = f(\varepsilon \mathfrak{N})$. Define the C^2 family $\overrightarrow{\mathcal{F}}$ of functions by $t_\varepsilon(\mathfrak{N}) = f_\varepsilon(\mathfrak{N}) + u(\mathfrak{N}) = v_\varepsilon(\varepsilon \mathfrak{N})$. Since for any fixed positive ε, the functions v_ε and t_ε differ only by a dilation, any information about the critical points of t_ε on \overrightarrow{d} may be interpreted as information concerning the critical points of v_ε on \overrightarrow{d}.

Let $W(\mathfrak{N})$ be a matrix-valued function on \overrightarrow{d} defined by $W(\mathfrak{N}) = (w_{ij})$, $i, j = 1, 2$, where $w_{ij} = 3y_{ij} / |\mathfrak{N}|^2$ provided $|\mathfrak{N}| \neq 0$, and $w_{ij}(0) = 0$. Let I equal the 2×2 identity matrix. Define $\theta(\mathfrak{N}) = |\mathfrak{N}|^2 + (1 + |\mathfrak{N}|^2) = 1 - (1/(1 + |\mathfrak{N}|^2))$. From (48) and (49) it follows that

$$\text{grad}_y(u) = -\mathfrak{N} / \left(1 + |\mathfrak{N}|^2 \right)^{3/2}. \tag{50}$$

$$H_y u = (\theta(\mathfrak{N}) W(\mathfrak{N}) - I) / \left(1 + |\mathfrak{N}|^2 \right)^{3/2}. \tag{51}$$

By hypothesis there exist numbers $0 < a < A$ such that if $X \in \overrightarrow{d}$ then

$$a < |\text{grad}_2(f)| < A. \tag{52}$$

(48), (50), and (52) clearly demonstrate that for sufficiently small positive ε, $\text{grad}_y(u)$ dominates $\text{grad}_y(f_\varepsilon)$ on the boundary of A_0. Therefore by (50), $\text{grad}_y(t_\varepsilon) \cdot \mathfrak{N} / |\mathfrak{N}| < 0$ for each sufficiently small positive ε and $\mathfrak{N} \in s_0$. In other words, all of the boundary of A_0 is entrap for the function t_ε for sufficiently small positive ε. Let μ_ε^0, $i = 0, 1$ be the boundary type numbers of t_ε on A_0. Since u is constant on s_0, it follows that μ_ε^0, $i = 0, 1$ are the type numbers of the restriction of f_ε to s_0 and are identical to the type numbers of $f|s_0^\varepsilon$. We may compute the type numbers of $f|s_0^\varepsilon$ for sufficiently small positive ε using Corollary 3 of Lemma 1 and obtain

$$\mu_\varepsilon^0 = \mu_1^0 = 1. \tag{53}$$
If τ_ϵ is nondegenerate on A_0, then let $m_i^{(0)}$ equal the interior type numbers of τ_ϵ on A_0 for $i = 0, 1, 2$. Then for sufficiently small positive ϵ we have

$$m_0^{(0)} + m_2^{(0)} - m_1^{(0)} = 1.$$ \hspace{1cm} (54)

It follows from the definition that $\text{norm}_2(W) < 3$, where norm_2 is the customary 2-norm of the matrix. Clearly the function $\theta \to 0$ uniformly on A_0 as $\epsilon \to 0$. In addition, $H_\epsilon f_\epsilon \to 0$ uniformly on \overline{d} as $\epsilon \to 0$. Therefore by (51), for each sufficiently small positive ϵ,

$$\text{index}(H_\epsilon f_\epsilon) = 2 \quad \text{if } y \in A_0.$$ \hspace{1cm} (55)

Therefore from (54) and (55) we have that for each sufficiently small positive ϵ, the function τ_ϵ has a unique critical point p_ϵ^* on A_0 and $\text{index}(p_\epsilon^*) = 2$, i.e.

$$m_2^{(0)} = 1, \quad m_0^{(0)} = m_1^{(0)} = 0.$$ \hspace{1cm} (56)

If $\Omega \in A_1$, then the following inequality follows from the definition of the region A_1.

$$\sqrt{\epsilon} \leq |\Omega| \leq \epsilon^{-2/5}.$$ \hspace{1cm} (57)

It follows then from (48) and (50) that

$$|\text{grad}_\epsilon(u)| > \frac{1}{2} \cdot \epsilon^{4/5}.$$ \hspace{1cm} (58)

(48) and (52) imply

$$|\text{grad}_\epsilon(f_\epsilon)| < A \cdot \epsilon \quad \text{for all } y \in \overline{d}.$$ \hspace{1cm} (59)

Therefore, for sufficiently small positive ϵ, the function τ_ϵ has no critical points on A_1.

By similar reasoning it follows from (48), (50) and (52) that for each Ω which belongs to A_3,

$$|\text{grad}_\epsilon(t_\epsilon)| > |\text{grad}_\epsilon(f_\epsilon)| - |\text{grad}_\epsilon(u)| > \epsilon a - \epsilon^{6/5} > 0$$ \hspace{1cm} (60)

for sufficiently small positive ϵ. It is therefore apparent that for each sufficiently small positive ϵ, the functions t_ϵ can have no critical points on the region A_3.

Let $A^* = A_0^* \cup A_1^* \cup A_2^*$ and let $B = \{\Omega(X)|X \in A^*\}$. Let m_0, m_1, m_2 equal the interior type numbers of t_ϵ on B and let μ_0, μ_1 equal the boundary type numbers of t_ϵ on B. Then by previous arguments, for a fixed positive ϵ, m_0, m_1, m_2 are the interior type numbers of v_ϵ on A^* and μ_0, μ_1 are the boundary type numbers of v_ϵ on A_*. On the other hand, the function u_ϵ is constant on s^*_2. Therefore the type numbers of $v_\epsilon|s^*_2$ equal the type numbers $f|s^*_2$. (60) assures that for each Ω in A_3, in particular for each Ω in the boundary of A_3, and sufficiently small positive ϵ, $\text{grad}_\epsilon(f_\epsilon)$ dominates $\text{grad}_\epsilon(u)$. Certainly by (48) the same statement holds replacing $\text{grad}_\epsilon(f_\epsilon)$ with $\text{grad}_\epsilon(f)$ and $\text{grad}_\epsilon(u)$ with $\text{grad}_\epsilon(u)$. Therefore, for each sufficiently small positive ϵ, an entrant critical point of v_ϵ on s^*_2 corresponds to an entrant critical point of f on s^*_2 and an emergent critical point of v_ϵ on s^*_2 corresponds to an emergent critical point of f on s^*_2. It then follows from Corollary 3 of Lemma 1 that, for each sufficiently small positive ϵ, the functions f and v_ϵ have exactly one entrant critical point on s^*_2 and this critical point is a minimum, i.e.
CRITICAL POINTS OF HARMONIC FUNCTIONS

\(\mu_0 = 1, \quad \mu_1 = 0. \) \hspace{1cm} (61)

In the following paragraph let the index \(i \) assume the values 0, 1, 2. Let \(m_i^{(2)} \) equal the interior type numbers of \(t_\varepsilon \) on \(A_2 \). Since it has been shown that for sufficiently small positive \(\varepsilon \), \(t_\varepsilon \) has no critical points on \(A_1 \), then we have, for sufficiently small positive \(\varepsilon \),

\[m_i = m_i^{(0)} + m_i^{(2)}. \] \hspace{1cm} (62)

From (56) and the fact that \(B \) is a disk, it follows that for sufficiently small positive \(\varepsilon \),

\[\sum_{i=0}^{2} (-1)^i m_i^{(2)} = -1. \] \hspace{1cm} (63)

It will now be shown that for each sufficiently small positive \(\varepsilon \) and \(\Theta \) in \(A_2 \), index\((H_\varepsilon, t_\varepsilon) = 1 \). The definition of \(t_\varepsilon \), (49) and (41) imply

\[
H_\varepsilon t_\varepsilon = H_\varepsilon (u + f_\varepsilon) = H_\varepsilon u + H_\varepsilon f_\varepsilon
= (\theta(\Theta) W(\Theta) - I) / (1 + |\Theta|^2)^{3/2} + \varepsilon^2 H_\varepsilon f.
\] \hspace{1cm} (64)

The definition of the region \(A_2 \) implies that if \(\Theta \in A_2 \),

\[\varepsilon^{-2/5} < |\Theta| < \varepsilon^{-3/5}. \] \hspace{1cm} (65)

From (65), it follows immediately for \(\varepsilon < 1 \),

\[\frac{1}{2} \varepsilon^{9/5} < (1 + |\Theta|^2)^{-3/2} < \varepsilon^{6/5}. \] \hspace{1cm} (66)

Also from the definition of the function \(\theta \) and (65), it follows that for \(\Theta \in A_2 \),

\[\lim_{\varepsilon \to 0^+} \theta(\Theta) = 1. \] \hspace{1cm} (67)

From the definition of \(W \) it is apparent that for \(|\Theta| \neq 0 \), the eigenvalues of the matrix \(W(\Theta) - I \) are 2 and \(-1\), independent of \(\Theta \). It now follows from (64), (65), and (67) that for \(\Theta \in A_2 \),

\[\lim_{\varepsilon \to 0^+} (1 + |\Theta|^2)^{3/2} H_\varepsilon t_\varepsilon = W - I. \] \hspace{1cm} (68)

Therefore, from the fact that the index of a matrix is invariant under scalar multiplication, index\((H_\varepsilon, t_\varepsilon) = \text{index}(W - I) = 1 \).

Therefore from (63) and (68), it follows that for sufficiently small positive \(\varepsilon \),

\[m_0^{(2)} = m_1^{(2)} = 0, \quad m_2^{(2)} = 1. \] \hspace{1cm} (69)

In other words, for sufficiently small positive \(\varepsilon \), the function \(t_\varepsilon \) has a unique critical point \(p_\varepsilon^* \) on the region \(A_2 \); \(p_\varepsilon^* \) is nondegenerate and index\((p_\varepsilon^*) = 1 \). This means that for each sufficiently small positive \(\varepsilon \), the function \(v_\varepsilon \mid_d \) has exactly two critical points, \(P_0^* \) and \(P_1^* \), defined by \(P_0^* = \Theta^{-1}(p_0^*) \), \(P_1^* = \Theta^{-1}(p_1^*) \) and \(P_0^* \in A_0^*, \ P_1^* \in A_2^* \). This proves assertion 1.

Assertion 2 is clear in light of the following equations.

\[\lim_{\varepsilon \to 0^+} \partial u_\varepsilon(X) / \partial x_3 = 0, \quad X \in A_2^*. \] \hspace{1cm} (70)

\[\lim_{\varepsilon \to 0^+} \partial u_\varepsilon(X) / \partial x_3 = +\infty, \quad X \in A_0^*. \] \hspace{1cm} (71)
The proof of assertion 3, from assertions 1, 2 and the definition of the terms involved, is a routine calculation. This completes the proof.

THEOREM 5. Suppose the condition numbers \(\mu_0, \mu_1, \mu_2, M_1, M_2, 1, R_1, R_2 \) are harmonically realizable. Then the following sets of condition numbers are also harmonically realizable.

a. \(\mu_0 + 1, \mu_1 + 1, \mu_0, M_1, M_2, 1, R_1, R_2 \).
b. \(\mu_0, \mu_1 + 1, \mu_2 + 1, M_1, M_2, 1, R_1, R_2 \).
c. \(\mu_0, \mu_1 + 1, \mu_2, M_1, M_2 + 1, 1, R_1, R_2 \).
d. \(\mu_0 + 1, \mu_1, \mu_2, M_1 + 1, M_2, 1, R_1, R_2 \).
e. \(\mu_0, \mu_1, \mu_2 + 1, M_1, M_2, 1, R_1, R_2 + 1 \).
f. \(\mu_0, \mu_1, \mu_2, M_1, M_2 + 1, 1, R_1, R_2 + 1 \).

PROOF. Parts a and b of Theorem 5 appear as Lemma 5.2 of [2].

Assume that \(u \) and \(\Omega \) is a harmonic realization of the type numbers \(\mu_0, \mu_1, \mu_2, M_1, M_2, 1, R_1, R_2 \). Define \(\Sigma, \Sigma^+, \Sigma^- \) from the pair \(u \) and \(\Omega \) as in the preliminaries. To prove c, let \(P \) be any point in \(\Sigma^- \) such that \(\text{grad}(u|\Sigma)(P) \neq 0 \). Now modify \(\Omega \) such that there exists a neighborhood of \(P, U, \) in \(\Sigma^- \) which is contained in a 2-dimensional linear manifold. It is clear that such a modification can be accomplished leaving \(\Sigma \) in class \(C^2 \) and the condition numbers \(\mu_0, \mu_1, \mu_2, M_1, M_2, 1, R_1, R_2 \) unaltered. By perhaps a rotation and translation, it is possible to assume that \(P = \text{origin} \) and \(N(P) = \langle 0, 0, 1 \rangle \). Define the \(C^2 \) family of functions \(\tilde{u} \) as in Theorem 4. Let \(\tilde{V} = \tilde{u} + u \).

Obviously for any fixed positive \(\varepsilon, v_\varepsilon \) is harmonic in a neighborhood of \(\Omega \). Theorem 4 implies the existence of a positive number \(\varepsilon_0 \) such that for \(0 < \varepsilon < \varepsilon_0 \), \(v_\varepsilon|U \) has exactly one entrant critical point; \(P_\varepsilon \) is n.d. and the index of \(P_\varepsilon \) is one. Lemma 1 and the fact that \(u_\varepsilon \) and all its derivatives tend to 0 as \(\varepsilon \) tends to 0 uniformly on any subset of \(R^3 \) which excludes a fixed neighborhood of the origin assure that outside any fixed neighborhood of the origin, and for sufficiently small positive \(\varepsilon \), the critical points of \(v_\varepsilon \) and \(v_\varepsilon|\Sigma^- \) correspond to the critical points of \(u \) and \(u|\Sigma^- \) respectively as to number and index.

In addition, Theorem 3 asserts that for each sufficiently small positive \(\varepsilon \), the function \(v_\varepsilon \) has a critical point, \(Q_\varepsilon = \langle q_1, q_2, q_3 \rangle \), \(Q_\varepsilon \) has index 2 and \(Q_\varepsilon \) tends to 0 as \(\varepsilon \to 0 \). Moreover, since 0 is an ordinary point of \(u \), there exists a fixed neighborhood \(H \) of 0 in \(R^3 \) such that for each sufficiently small positive \(\varepsilon \), \(Q_\varepsilon \) is the only critical point of \(u_\varepsilon \) on \(H \). By the fact that \(\text{grad}(u(0)) \cdot N(0) < 0 \), and assertion 3 of Theorem 3, it follows that \(q_3 < \varepsilon - \text{const} \varepsilon^{1/2} < 0 \) for all sufficiently small positive \(\varepsilon \). Therefore, for sufficiently small positive \(\varepsilon \), \(Q_\varepsilon \) is contained in \(\Omega \). From its definition, it follows that \(u_\varepsilon \) and all its derivatives tend to 0 uniformly on \(R^3 - H \). Therefore the addition of \(u_\varepsilon \) to the function \(u \) adds one more critical point, \(Q_\varepsilon \), to the critical set of \(u \) on \(\Omega \). This statement combined with the proven values of the indices of \(P_\varepsilon \) and \(Q_\varepsilon \) complete the proof of part c.

To prove part d, choose \(P \) to be a point in \(\Sigma^+ \) and \(v_\varepsilon = u - u_\varepsilon \). The proof now proceeds in a manner completely analogous to the proof of part c.
CRITICAL POINTS OF HARMONIC FUNCTIONS

To prove part e, pick a point P in Ω such that $\text{grad}(u(P)) \neq 0$. Let $\Omega' = (\Omega - (\text{ball of radius } \varepsilon \text{ centered at } P))$. Clearly, for sufficiently small positive ε, the second betti number of $\Omega' = R_2 + 1$. By Corollary 3 of Lemma 2, for sufficiently small positive ε, the second boundary type number of u on $\Omega' = \mu_2 + 1$. This proves part e.

To prove part f, define Ω' as above. Define u'_ε on Ω' by $u'_\varepsilon(X) = \varepsilon/|P - X| + u$, a harmonic function for each fixed ε.

$$\text{grad}(u'_\varepsilon) = \text{grad}(u) + \varepsilon \cdot (P - X)/|P - X|^3. \quad (72)$$

Clearly, from (72), for sufficiently small positive ε, the function u'_ε is emergent on the portion of boundary of Ω' which consists of (sphere of radius ε centered at P). Therefore, for sufficiently small positive ε, the boundary type numbers of u'_ε on Ω' are identical to those of u on Ω. By Theorem 3, the function u'_ε has exactly one more critical point on Ω' than did u on Ω, and this critical point is n.d. with index 2. Lemma 1 assures that the critical points of u'_ε outside any fixed neighborhood of P correspond in number and in index to the critical points of u on Ω for sufficiently small positive ε. This completes the proof of part f.

THEOREM 6. Suppose the condition numbers $\mu_0, \mu_1, \mu_2, M_1, M_2, 1, R_1, R_2$ are nonnegative and satisfy (1). Then this set of integers is harmonically realizable.

PROOF. The strategy of this proof is to reduce the given set of condition numbers, by applying Theorem 5, to a set of elementary condition numbers which have been proved harmonically realizable.

I. By iterated use of parts e and f of Theorem 5, it is possible to reduce the given set of type numbers to one of the following two forms.

a. $\mu_0', \mu_1', \mu_2', M'_1, M'_2, 1, R'_1, 0.$

b. $\mu_0', \mu_1', 0, M'_1, 0, 1, R'_1, R'_2.$

The inequalities of (1) guarantee form a may always be achieved.

II. By iterated use of parts a and d of Theorem 5, it is possible to reduce numbers of the form Ia to numbers of one of the following two forms.

a. $1, \mu_1', \mu_2', M'_1, M'_2, 1, R'_1, 0.$

b. $\mu_0', 0, \mu_2', 0, M'_2, 1, R'_1, 0.$

The inequalities of (1) guarantee form a may always be achieved.

III. By iterated use of parts b and c of Theorem 5, it is possible to reduce numbers of the form IIa to one of the following two forms.

a. $1, \mu_1', \mu_2', M'_1, M'_2, 1, R'_1, 0,$ for $\mu_1' < R'_1$.

b. $1, \mu_1', 0, M'_1, 0, 1, R'_1, 0.$

The inequalities of (1) guarantee form a may always be achieved.

IIIa is a set of elementary condition numbers which are harmonically realizable by Theorem 2. By reversing the reduction process, it is possible to augment the numbers of IIIa to the original set of condition numbers which must then also be harmonically realizable by Theorem 5. This completes the proof of Theorem 6.
References

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916