Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hardy spaces and rearrangements


Author: Burgess Davis
Journal: Trans. Amer. Math. Soc. 261 (1980), 211-233
MSC: Primary 42A50; Secondary 30D55, 42A61, 42B30, 60G46, 60J65
DOI: https://doi.org/10.1090/S0002-9947-1980-0576872-9
MathSciNet review: 576872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let f be an integrable valued function on the unit circle in the complex plane, and let g be the rearrangement of f satisfying $ g({e^{i\theta }})\, \geqslant \,g({e^{i\varphi }})$ if $ 0\, \leqslant \,\theta \, < \,\varphi \, < \,2\pi $.

Define

$\displaystyle G(\theta )\, = \,\int_{ - \theta }^\theta {g({e^{i\varphi }})} \,d\varphi $

. It is shown that some rearrangement of f is in $ \operatorname{Re} \,{H^1}$, that is, the distribution of f is the distribution of a function in $ \operatorname{Re} \,{H^1}$, if and only if $ \int_0^\pi {\vert G(\theta )/\theta \vert} \,d\theta \, < \,\infty $, and that, if any rearrangement of f is in $ \operatorname{Re} \,{H^1}$, then g is. The existence and form of rearrangements minimizing the $ {H^1}$ norm are investigated. It is proved that f is in $ \operatorname{Re} \,{H^1}$ if and only if some rotation of f is in the space dyadic $ {H^1}$ of martingales. These results are extended to other $ {H^p}$ spaces.

References [Enhancements On Off] (What's this?)

  • [1] L. Alfhors, Conformal invariants, McGraw-Hill, New York, 1973.
  • [2] A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), 833-852. MR 503717 (80g:30022)
  • [3] -, Some sharp inequalities for conjugate functions, Proc. Sympos. Pure Math., vol. 35, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 409-416. MR 545280 (81d:42015)
  • [4] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class $ {H^p}$, Trans. Amer. Math. Soc. 157 (1971), 137-153. MR 0274767 (43:527)
  • [5] D. L. Burkholder and R. F. Gundy, Boundary behavior of harmonic functions in a half space and Brownian motion, Ann. Inst. Fourier (Grenoble) 23 (1972), 195-212. MR 0365691 (51:1943)
  • [6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their uses in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [7] B. Davis, Brownian motion and analytic functions, Ann. Probability 7 (1979), 913-932. MR 548889 (80j:30001)
  • [8] M. Essen and D. Shea (to appear).
  • [9] A. Garsia, Martingale inequalities, Benjamin, New York, 1973. MR 0448538 (56:6844)
  • [10] C. Herz, $ {H_p}$ spaces of martingales, $ 0\, < \,p\, \leqslant \,1$, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 189-205. MR 0372987 (51:9189)
  • [11] G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294-319. MR 0079377 (18:77a)
  • [12] A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1968.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A50, 30D55, 42A61, 42B30, 60G46, 60J65

Retrieve articles in all journals with MSC: 42A50, 30D55, 42A61, 42B30, 60G46, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0576872-9
Keywords: Hardy spaces, conjugate function, rearrangements, Brownian motion, martingale
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society