Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existentially complete abelian lattice-ordered groups


Authors: A. M. W. Glass and Keith R. Pierce
Journal: Trans. Amer. Math. Soc. 261 (1980), 255-270
MSC: Primary 03C60; Secondary 03C35, 06F20
DOI: https://doi.org/10.1090/S0002-9947-1980-0576874-2
MathSciNet review: 576874
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of abelian totally ordered groups has a model completion. We show that the theory of abelian lattice-ordered groups has no model companion. Indeed, the Archimedean property can be captured by a first order $ \forall\exists\forall$ sentence for existentially complete abelian lattice-ordered groups, and distinguishes between finitely generic abelian lattice-ordered groups and infinitely generic ones. We then construct (by sheaf techniques) the model companions of certain classes of discrete abelian lattice-ordered groups.


References [Enhancements On Off] (What's this?)

  • [1] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math., vol. 608, Springer, Berlin and New York, 1977. MR 0552653 (58:27688)
  • [2] G. Cherlin, Model-theoretic algebra-selected topics, Lecture Notes in Math., vol. 521, Springer, Berlin and New York, 1976. MR 0539999 (58:27455)
  • [3] S. D. Comer, Complete and model-complete theories of monadic algebras, Colloq. Math. 34 (1976), 183-190. MR 0480008 (58:209)
  • [4] P. F. Conrad, Regularly ordered groups, Proc. Amer. Math. Soc. 13 (1962), 726-731. MR 0146272 (26:3794)
  • [5] -, Lattice-ordered groups, Tulane Lecture Notes, Tulane Univ., New Orleans, 1970.
  • [6] J. Dauns and K. H. Hoffmann, The representation of biregular rings by sheaves, Math. Z. 91 (1966), 103-123. MR 0186693 (32:4151)
  • [7] P. C. Eklof and G. Sabbagh, Model-completions and modules, Ann. Math. Logic 2 (1971), 251-295. MR 0277372 (43:3105)
  • [8] George Eliot, Middlemarch, 1872.
  • [9] A. M. W. Glass and K. R. Pierce, Equations and inequations in lattice-ordered groups (Proc. Ordered Groups Conference, Boise, Idaho, 1978), Dekker, New York (to appear). MR 601623 (82c:06030)
  • [10] J. Hirschfeld and W. H. Wheeler, Forcing, arithmetic, division rings, Lecture Notes in Math., vol. 454, Springer, Berlin and New York, 1975. MR 0389581 (52:10412)
  • [11] L. Lipshitz and D. Saracino, The model companion of the theory of commutative rings without nilpotent elements, Proc. Amer. Math. Soc. 38 (1973), 381-387. MR 0439624 (55:12510)
  • [12] A. Macintyre, Model-completeness for sheaves of structures, Fund. Math. 81 (1973), 73-89. MR 0337592 (49:2361)
  • [13] -, Model-completeness, handbook of mathematical logic, (K. J. Barwise, editor), North-Holland, Amsterdam, 1977. MR 0491125 (58:10395)
  • [14] K. R. Pierce, Amalgamations of lattice-ordered groups, Trans. Amer. Math. Soc. 172 (1972), 249-260. MR 0325488 (48:3835)
  • [15] A. Robinson, Complete theories, North-Holland, Amsterdam, 1956. MR 0075897 (17:817b)
  • [16] A. Robinson and E. Zakon, Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 96 (1960), 222-236. MR 0114855 (22:5673)
  • [17] D. Saracino, Existentially complete nilpotent groups, Israel J. Math. 25 (1976), 241-248. MR 0453518 (56:11780)
  • [18] -, Existentially complete torsion-free nilpotent groups, J. Symbolic Logic 43 (1978), 126-134. MR 0480011 (58:212)
  • [19] D. Saracino and C. Wood, Periodic existentially closed nilpotent groups, J. Algebra 58 (1979), 189-207. MR 535853 (80m:03071)
  • [20] W. H. Wheeler, A characterization of companionable, universal theories, J. Symbolic Logic 43 (1978), 402-429. MR 0491131 (58:10400)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C60, 03C35, 06F20

Retrieve articles in all journals with MSC: 03C60, 03C35, 06F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0576874-2
Keywords: Abelian lattice-ordered groups, model companion, model completion, existentially complete, algebraically closed, finite forcing, infinite forcing, sheaf, section
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society