Topological spaces with prescribed nonconstant continuous mappings

Author:
Věra Trnková

Journal:
Trans. Amer. Math. Soc. **261** (1980), 463-482

MSC:
Primary 54C05; Secondary 20M20, 54H10

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580898-9

MathSciNet review:
580898

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a -space *Y* and a -space *V*, consider -spaces *X* such that *X* has a closed covering by spaces homeomorphic to *V* and any continuous mapping is constant. All such spaces and all their continuous mappings are shown to form a very comprehensive category, containing, e.g., a proper class of spaces without nonconstant, nonidentical mappings or containing a space *X*, for every monoid *M*, such that all the nonconstant continuous mappings of *X* into itself are closed under composition and form a monoid isomorphic to *M*. The category of paracompact connected spaces, having a closed covering by a given totally disconnected paracompact space, has, e.g., analogous properties. Categories of metrizable spaces are also investigated.

**[1]**H. Cook,*Continua which admit only the identity mapping onto non-degenerate subcontinua*, Fund. Math.**60**(1967), 241-249. MR**0220249 (36:3315)****[2]**T. E. Gantner,*A regular space on which every continuous real-valued function is constant*, Amer. Math. Monthly**78**(1971), 52-53. MR**0271902 (42:6783)****[3]**J. de Groot,*Groups represented by homeomorphisms groups*. I, Math. Ann.**138**(1959), 80-102. MR**0119193 (22:9959)****[4]**Z. Hedrlín,*Non-constant continuous transformations form any semigroup with a unity*, Nieuw Arch. Wisk.**14**(1966), 230-236. MR**0209373 (35:271)****[5]**Z. Hedrlín and J. Lambek,*How comprehensive is the category of semigroups*, J. Algebra**11**(1969), 195-212. MR**0237611 (38:5892)****[6]**H. Herrlich,*Wann sind alle stetigen Abbildungen in Y konstant*? Math. Z.**90**(1965), 152-154. MR**0185565 (32:3029)****[7]**-,*Topologische reflexionen und coreflexionen*, Lecture Notes in Math., vol. 78, Springer-Verlag, Berlin and New York, 1968. MR**0256332 (41:988)****[8]**E. Hewitt,*On two problems of Urysohn*, Ann. of Math. (2)**47**(1946), 503-509. MR**0017527 (8:165g)****[9]**J. R. Isbell,*Subobjects, adequacy, completeness and categories of algebras*, Rozprawy Mat.**36**(1964). MR**0163939 (29:1238)****[10]**V. Koubek,*Each concrete category has a representation by*-*paracompact topological spaces*, Comment. Math. Univ. Carolinae**15**(1974), 655-663. MR**0354806 (50:7283)****[11]**L. Kučera,*Lectures on the theory of categories*, Charles University, 1970 (preprint). (Czech)**[12]**J. Novák,*Regular space on which every continuous function is constant*, Casopis Pést. Mat. Fys.**73**(1948), 58-68. MR**0028576 (10:467h)****[13]**A. Pultr and V. Trnková,*Combinatorial, algebraic and topological representations of groups, semigroups and categories*, North Holland, Amsterdam, 1980; Czechoslovak Publ. House, Academia, Prague, 1980. MR**563525 (81d:18001)****[14]**V. Trnková,*Non-constant continuous mappings of metric or compact Hausdorff spaces*, Comment. Math. Univ. Carolinae**13**(1972), 283-295. MR**0303486 (46:2623)****[15]**-,*All small categories are representable by continuous nonconstant mappings of bicompacta*, Soviet. Math. Dokl.**17**(1976), 1403-1406.**[16]**-,*Categorial aspects are useful for topology*, Proceedings of the IVth Prague Topological Symposium, Lecture Notes in Math., vol. 609, Springer-Verlag, Berlin and New York, pp. 211-215. MR**0458370 (56:16573)****[17]**P. Vopěnka, A. Pultr and Z. Hedrlín,*A rigid relation exists on any set*, Comment. Math. Univ. Carolinae**6**(1965), 149-155. MR**0183647 (32:1127)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54C05,
20M20,
54H10

Retrieve articles in all journals with MSC: 54C05, 20M20, 54H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580898-9

Article copyright:
© Copyright 1980
American Mathematical Society