Topological spaces with prescribed nonconstant continuous mappings

Author:
Věra Trnková

Journal:
Trans. Amer. Math. Soc. **261** (1980), 463-482

MSC:
Primary 54C05; Secondary 20M20, 54H10

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580898-9

MathSciNet review:
580898

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a -space *Y* and a -space *V*, consider -spaces *X* such that *X* has a closed covering by spaces homeomorphic to *V* and any continuous mapping is constant. All such spaces and all their continuous mappings are shown to form a very comprehensive category, containing, e.g., a proper class of spaces without nonconstant, nonidentical mappings or containing a space *X*, for every monoid *M*, such that all the nonconstant continuous mappings of *X* into itself are closed under composition and form a monoid isomorphic to *M*. The category of paracompact connected spaces, having a closed covering by a given totally disconnected paracompact space, has, e.g., analogous properties. Categories of metrizable spaces are also investigated.

**[1]**H. Cook,*Continua which admit only the identity mapping onto non-degenerate subcontinua*, Fund. Math.**60**(1967), 241–249. MR**0220249****[2]**T. E. Gantner,*A regular space on which every continuous real-valued function is constant*, Amer. Math. Monthly**78**(1971), 52–53. MR**0271902**, https://doi.org/10.2307/2317489**[3]**J. de Groot,*Groups represented by homeomorphism groups*, Math. Ann.**138**(1959), 80–102. MR**0119193**, https://doi.org/10.1007/BF01369667**[4]**Z. Hedrlín,*Non-constant continuous transformations form any semigroup with a unity*, Nieuw Arch. Wisk. (3)**14**(1966), 230–236. MR**0209373****[5]**Zdeněk Hedrlín and Joachim Lambek,*How comprehensive is the category of semigroups?*, J. Algebra**11**(1969), 195–212. MR**0237611**, https://doi.org/10.1016/0021-8693(69)90054-4**[6]**Horst Herrlich,*Wann sind alle stetigen Abbildungen in 𝑌 konstant?*, Math. Z.**90**(1965), 152–154 (German). MR**0185565**, https://doi.org/10.1007/BF01112240**[7]**Horst Herrlich,*Topologische Reflexionen und Coreflexionen*, Lecture Notes in Mathematics, No. 78, Springer-Verlag, Berlin-New York, 1968 (German). MR**0256332****[8]**Edwin Hewitt,*On two problems of Urysohn*, Ann. of Math. (2)**47**(1946), 503–509. MR**0017527**, https://doi.org/10.2307/1969089**[9]**J. R. Isbell,*Subjects, adequacy, completeness and categories of algebras. [Subobjects, adequacy, completeness and categories of algebras]*, Rozprawy Mat.**36**(1964), 33. MR**0163939****[10]**Václav Koubek,*Each concrete category has a representation by 𝑇₂ paracompact topological spaces*, Comment. Math. Univ. Carolinae**15**(1974), 655–664. MR**0354806****[11]**L. Kučera,*Lectures on the theory of categories*, Charles University, 1970 (preprint). (Czech)**[12]**Josef Novák,*Regular space, on which every continuous function is constant*, Časopis Pěst. Mat. Fys.**73**(1948), 58–68 (Czech, with English summary). MR**0028576****[13]**Aleš Pultr and Věra Trnková,*Combinatorial, algebraic and topological representations of groups, semigroups and categories*, North-Holland Mathematical Library, vol. 22, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**563525****[14]**Věra Trnková,*Non-constant continuous mappings of metric or compact Hausdorff spaces*, Comment. Math. Univ. Carolinae**13**(1972), 283–295. MR**0303486****[15]**-,*All small categories are representable by continuous nonconstant mappings of bicompacta*, Soviet. Math. Dokl.**17**(1976), 1403-1406.**[16]**Věra Trnková,*Categorial aspects are useful for topology*, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Springer, Berlin, 1977, pp. 211–225. Lecture Notes in Math., Vol. 609. MR**0458370****[17]**P. Vopěnka, A. Pultr, and Z. Hedrlín,*A rigid relation exists on any set*, Comment. Math. Univ. Carolinae**6**(1965), 149–155. MR**0183647**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54C05,
20M20,
54H10

Retrieve articles in all journals with MSC: 54C05, 20M20, 54H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580898-9

Article copyright:
© Copyright 1980
American Mathematical Society