In-between theorems in uniform spaces

Authors:
D. Preiss and J. Vilímovský

Journal:
Trans. Amer. Math. Soc. **261** (1980), 483-501

MSC:
Primary 54C30; Secondary 54E15

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580899-0

MathSciNet review:
580899

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions for the existence of a uniformly continuous function in-between given functions on a uniform space are studied. It appears that the investigation of this problem is closely related to some combinatorial properties of covers and leads to the concept of perfect refinability, the latter being used, e.g., to obtain an intrinsic description of uniform real extensors. Several interesting classes of uniform spaces are characterized by special types of in-between theorems. As examples of applications we show that the usual in-between theorems in topology and their generalizations, as well as some important methods of construction of derivatives of real functions, follow easily from the general results.

**[1]**H. H. Corson and J. R. Isbell,*Some properties of strong uniformities*, Quart. J. Math. Oxford Ser. (2)**11**(1960), 17–33. MR**0124030**, https://doi.org/10.1093/qmath/11.1.17**[2]**Zdeněk Frolík,*Locally 𝑒-fine measurable spaces*, Trans. Amer. Math. Soc.**196**(1974), 237–247. MR**0383357**, https://doi.org/10.1090/S0002-9947-1974-0383357-9**[3]**Zdeněk Frolík,*Three uniformities associated with uniformly continuous functions*, Symposia Mathematica, Vol. XVII (Convegno sugli Anelli di Funzioni Continue, INDAM, Rome, 1973) Academic Press, London, 1976, pp. 69–80. MR**0478110****[4]**Z. Frolík, J. Pelant and J. Vilímovský,*On hedgehog-topologically fine uniform spaces*, Seminar Uniform Spaces (Prague, 1975-76), Mat. Ústav Českaslovenské Akad. Věd., Prague, 1976, pp. 75-86.**[5]**Z. Frolík, J. Pelant, and J. Vilímovský,*Extensions of uniformly continuous functions*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**26**(1978), no. 2, 143–148 (English, with Russian summary). MR**0493977****[6]**H. Hahn,*Über halbstätige und unstetige Funktionen*, Sitzungsb. Akad. Wien**126**(1917), 91-110.**[7]**J. R. Isbell,*Uniform spaces*, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR**0170323****[8]**M. Katětov,*On real-valued functions in topological spaces*, Fund. Math.**38**(1951), 85–91. MR**0050264****[9]**Isaiah Maximoff,*On density points and approximately continuous functions*, Tôhoku Math. J.**47**(1940), 237–250. MR**0004283****[10]**Ernest Michael,*Continuous selections. I*, Ann. of Math. (2)**63**(1956), 361–382. MR**0077107**, https://doi.org/10.2307/1969615**[11]**G. Petruska and M. Laczkovich,*A theorem on approximately continuous functions*, Acta Math. Acad. Sci. Hungar.**24**(1973), 383–387. MR**0325871**, https://doi.org/10.1007/BF01958051**[12]**M. D. Rice,*Composition properties in uniform spaces*, Acta Math. Acad. Sci. Hungar.**30**(1977), no. 3-4, 189–195. MR**0454927**, https://doi.org/10.1007/BF01896183**[13]**Mary Ellen Rudin,*A normal space 𝑋 for which 𝑋×𝐼 is not normal*, Fund. Math.**73**(1971/72), no. 2, 179–186. MR**0293583****[14]**J. Vilímovský,*Uniformly continuous Banach valued mappings*, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Soc. Czechoslovak Mathematicians and Physicists, Prague, 1977, pp. 481–484. MR**0461424****[15]**J. Vilímovský,*Uniformly continuous Banach valued mappings*, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Soc. Czechoslovak Mathematicians and Physicists, Prague, 1977, pp. 481–484. MR**0461424****[16]**Z. Zahorski,*Sur la première dérivée*, Trans. Amer. Math. Soc.**69**(1950), 1–54 (French). MR**0037338**, https://doi.org/10.1090/S0002-9947-1950-0037338-9

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54C30,
54E15

Retrieve articles in all journals with MSC: 54C30, 54E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0580899-0

Keywords:
Uniform space,
mixed preimage,
far sets with respect to a cover,
perfectly refinable cover,
Ext-uniformity,
inversion-closed space

Article copyright:
© Copyright 1980
American Mathematical Society