Kernels for the tangential Cauchy-Riemann equations

Author:
Al Boggess

Journal:
Trans. Amer. Math. Soc. **262** (1980), 1-49

MSC:
Primary 32F20; Secondary 35N15

DOI:
https://doi.org/10.1090/S0002-9947-1980-0583846-0

MathSciNet review:
583846

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On certain codimension one and codimension two submanifolds in , we can solve the tangential Cauchy-Riemann equations with an explicit integral formula for the solution.

Let , where *D* is a strictly pseudoconvex domain in . Let be defined by , where *h* is holomorphic near *D*. Points on the boundary of , , where the tangent space of becomes complex linear, are called characteristic points.

Theorem 1. *Suppose* *is admissible (in particular if* *has two characteristic points). Suppose* , , *is smooth on* *and satisfies* *on* ; *then there exists* *which is smooth on* *except possibly at the characteristic points on* *and which solves the equation* on .

Theorem 2. *Suppose* , , *is smooth on* ; *vanishes near each characteristic point; and* *on* . *Then there exists* *satisfying* *on* .

Theorem 3. *Suppose* , , *is smooth with compact support in* , *and* . *Then there exists* *with compact support in* *and which solves* .

In all three theorems we have an explicit integral formula for the solution.

Now suppose . Let be the set of characteristic points on *S*. We construct an explicit operator with the following properties.

Theorem 4. *The operator E maps* *and if* , , *then* .

**[1]**A. Andreotti, C. Denson Hill, S. Łojasiewicz, and B. MacKichan,*Complexes of differential operators. The Mayer-Vietoris sequence*, Invent. Math.**35**(1976), 43–86. MR**0423425**, https://doi.org/10.1007/BF01390133**[2]**A. Boggess,*Plemelj jump formulas for the fundamental solution to**on the sphere*, preprint.**[3]**Jiri Dadok and Reese Harvey,*The fundamental solution for the Kohn-Laplacian 𝑐𝑚_{𝑏} on the sphere in 𝐶ⁿ*, Math. Ann.**244**(1979), no. 2, 89–104. MR**550841**, https://doi.org/10.1007/BF01420485**[4]**G. B. Folland and J. J. Kohn,*The Neumann problem for the Cauchy-Riemann complex*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR**0461588****[5]**Hans Grauert and Ingo Lieb,*Das Ramirezsche Integral und die Lösung der Gleichung ∂𝑓=𝛼 im Bereich der beschränkten Formen*, Rice Univ. Studies**56**(1970), no. 2, 29–50 (1971) (German). MR**0273057****[6]**R. Harvey and J. Polking,*Fundamental solutions in complex analysis*. I, II, Duke Math. J.**46**(1979), 253-300; 301-340.**[7]**G. M. Henkin,*Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications*, Mat. Sb. (N.S.)**78 (120)**(1969), 611–632 (Russian). MR**0249660****[8]**-,*Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the**problem*, Mat. Sb.**82**(**124**) (1970), 300-308; English transl, in Math. USSR-Sb.**11**(1970), 273-281.**[9]**G. M. Henkin,*Solutions with bounds for the equations of H. Lewy and Poincaré-Lelong. Construction of functions of Nevanlinna class with given zeros in a strongly pseudoconvex domain*, Dokl. Akad. Nauk SSSR**224**(1975), no. 4, 771–774 (Russian). MR**0466634****[10]**-,*The H. Lewy equation and analysis of pseudo-convex manifolds*, Uspehi Mat. Nauk**32**(1977), no. 3; English transl, in Russian Math. Surveys**32**(1977).**[11]**-,*H. Lewy's equation and analysis on a pseudo-convex manifolds*. II, Mat. Sb.**102**(**144**) (1977), 71-108; English transl. in Math. USSR-Sb.**31**(1977), 63-94.**[12]**L. Hörmander,*An introduction to complex analysis in several variables*, Van Nostrand, Princeton, N. J., 1965.**[13]**L. R. Hunt, J. C. Polking, and M. J. Strauss,*Unique continuation for solutions to the induced Cauchy-Riemann equations*, J. Differential Equations**23**(1977), no. 3, 436–447. MR**0590067**, https://doi.org/10.1016/0022-0396(77)90121-8**[14]**Nils Øvrelid,*Integral representation formulas and 𝐿^{𝑝}-estimates for the ∂-equation*, Math. Scand.**29**(1971), 137–160. MR**0324073**, https://doi.org/10.7146/math.scand.a-11041**[15]**Enrique Ramírez de Arellano,*Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis*, Math. Ann.**184**(1969/1970), 172–187 (German). MR**0269874**, https://doi.org/10.1007/BF01351561**[16]**A. V. Romanov,*A formula and estimates for the solution of the tangential Cauchy-Riemann equation*, Dokl. Akad. Nauk SSSR**220**(1975), 532–535 (Russian). MR**0385172****[17]**A. V. Romanov,*A formula and estimates for the solutions of the tangential Cauchy-Riemann equation*, Mat. Sb. (N.S.)**99(141)**(1976), no. 1, 58–83, 135 (Russian). MR**0409872****[18]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[19]**R. O. Wells Jr.,*Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles*, Math. Ann.**179**(1969), 123–129. MR**0237823**, https://doi.org/10.1007/BF01350124

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32F20,
35N15

Retrieve articles in all journals with MSC: 32F20, 35N15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0583846-0

Article copyright:
© Copyright 1980
American Mathematical Society