Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The product of two countably compact topological groups


Author: Eric K. van Douwen
Journal: Trans. Amer. Math. Soc. 262 (1980), 417-427
MSC: Primary 22A05; Secondary 03E50, 54A35, 54D30
DOI: https://doi.org/10.1090/S0002-9947-1980-0586725-8
MathSciNet review: 586725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use MA ( = Martin's Axiom) to construct two countably compact topological groups whose product is not countably compact. To this end we first use MA to construct an infinite countably compact topological group which has no nontrivial convergent sequences.


References [Enhancements On Off] (What's this?)

  • [AU] P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Konink. Akad. Wetensch., Afd. Nat., Sectie 1, 14 (1929), 1-96.
  • [B] A. R. Bernstein, A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193. MR 0251697 (40:4924)
  • [CP] E. Čech and B. Pospíšil, Sur les espaces compacts, Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 1-14.
  • [C] W. W. Comfort, Letter to K. A. Ross, August 1, 1966.
  • [CR] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16 (1966), 483-496. MR 0207886 (34:7699)
  • [CS] W. W. Comfort and V. Saks, Countably compact groups and finest totally bounded topologies, Pacific J. Math. 49 (1973), 33-44. MR 0372104 (51:8321)
  • [vD1] E. K. van Douwen, Homogeneity of $ \beta G$ (if G is a topological group), Colloq. Math. (to appear).
  • [vD2] -, The product of two normal initially K-compact spaces, Trans. Amer. Math. Soc. (to appear).
  • [E1] R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304. MR 0196692 (33:4879)
  • [E2] -, General topology, Polish Scientific Publishers, Warsaw, 1977. MR 0500780 (58:18316b)
  • [GS] J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. MR 0380736 (52:1633)
  • [HJ1] A. Hajnal and L. Juhász, On hereditarily $ \alpha $-Lindelöf and $ \alpha $-separable spaces. II, Fund. Math. 81 (1974), 147-158.
  • [HJ2] -, A separable normal topological group need not be Lindelö, General Topology and Appl. 6 (1976), 199-205. MR 0431086 (55:4088)
  • [HR] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Academic Press, New York; Springer-Verlag, Berlin and New York, 1963.
  • [J] I. Juhász, Review of [B], MR 40 #4924.
  • [K] K. Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299-306. MR 0314619 (47:3170)
  • [Kz] V. Kuz'minov, On a hypothesis of Alexandrov, Dokl. Akad. Nauk SSSR 123 (1958), 785-786. MR 0102569 (21:1359)
  • [McKM] R. McKenzie and J. D. Monk, On automorphism groups of Boolean algebras, Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975. MR 0376476 (51:12651)
  • [N] J. Novák, On the cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112. MR 0060212 (15:640f)
  • [P] W. M. Priestley, A sequentially closed countable dense subset of $ {I^I}$, Proc. Amer. Math. Soc. 24 (1970), 270-271. MR 0249547 (40:2792)
  • [S] V. Saks, Ultrafilter invariants in topological spaces, Trans. Amer. Math. Soc. 241 (1978), 79-97. MR 492291 (80h:54003)
  • [SS] V. Saks and R. M. Stephenson, Products of $ \mathcal{m}$-compact spaces, Proc. Amer. Math. Soc. 28 (1971), 279-288. MR 0273570 (42:8448)
  • [T] H. Teresaka, On the cartesian product of compact spaces, Osaka J. Math. 4 (1952), 11-15. MR 0051500 (14:489d)
  • [dV] J. de Vries, Pseudocompactness and the Stone-Čech compactification for topological groups, Nieuw Arch. Wisk. (3) 23 (1975), 35-48. MR 0401978 (53:5801)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A05, 03E50, 54A35, 54D30

Retrieve articles in all journals with MSC: 22A05, 03E50, 54A35, 54D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0586725-8
Keywords: Topological group, product, countably compact, convergent sequence, Martin's Axiom, initially $ {\omega _1}$-compact
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society