Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Linear spaces with an $ H\sp{\ast} $-algebra-valued inner product


Author: Parfeny P. Saworotnow
Journal: Trans. Amer. Math. Soc. 262 (1980), 543-549
MSC: Primary 46K99; Secondary 46G10, 46H99
DOI: https://doi.org/10.1090/S0002-9947-1980-0586734-9
Erratum: Trans. Amer. Math. Soc. 270 (1982), 349.
MathSciNet review: 586734
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper deals with a particular class of VH-spaces of Loynes [5] whose inner product assumes its values in a trace-algebra associated with an $ H^{\ast}$-algebra. It is shown that these spaces admit a structure of a ``nonassociative module", and this structure could be used to characterize such spaces. Also we characterize other related spaces.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 7, 126. MR 0013235 (7:126c)
  • [2] George R. Giellis, A characterization of Hilbert module, Proc. Amer. Math. Soc. 36 (1972), 440-442. MR 0320763 (47:9297)
  • [3] H. H. Goldstine and L. P. Horwitz, Hilbert space with non-associative scalars. II, Math. Ann. 164 (1966), 291-316. MR 0198182 (33:6341)
  • [4] L. H. Loomis, Abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [5] R. M. Loynes, Linear operators in VH-spaces, Trans. Amer. Math. Soc. 116 (1965), 167-180. MR 0192359 (33:584)
  • [6] -, On a generalization of second-order stationarity, Proc. London Math. Soc. (3) 15 (1965), 385-398. MR 0176531 (31:803)
  • [7] G. W. Mackey, Commutative Banach algebras, Lecture Notes, Harvard University, 1952; Livraria Castelo, Rio de Janerio, 1959. MR 0107184 (21:5909)
  • [8] Pesi Masani, Orthogonally scattered measures, Advances in Math. 2 (1968), 61-117. MR 0228651 (37:4231)
  • [9] M. A. Naimark, Normed rings, GITTL, Moscow, 1956; English transl, by L. F. Boron, Noordhoff, Groningen, 1964. MR 0355601 (50:8075)
  • [10] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191-197. MR 0227749 (37:3333)
  • [11] -, Representation of a topological group on a Hilbert module, Duke Math. J. 37 (1970), 145-150. MR 0262837 (41:7442)
  • [12] -, Trace-class and centralizers of an $ H^{\ast}$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2304 MR 0267403 (42:2305)
  • [13] -, Abstract stationary processes, Proc. Amer. Math. Soc. 40 (1973), 585-589. MR 0324762 (48:3111)
  • [14] -, A characterization of Hilbert modules, Bull. Calcutta Math. 68 (1976), 39-41. MR 0458184 (56:16387)
  • [15] -, Daniell construction for an $ H^{\ast}$-algebra valued measure, Indiana Univ. Math. J. 25 (1976), 877-882. MR 0410397 (53:14147)
  • [16] P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary $ H^{\ast}$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304. MR 0267402 (42:2304)
  • [17] James F. Smith, The structure of Hilbert modules, J. London Math. Soc. (2) 8 (1974), 741-749. MR 50 #10826. MR 0358360 (50:10826)
  • [18] J. D. Maitland Wright, Measures with values in a partially ordered vector space, Proc. London Math. Soc. (3) 25 (1972), 675-688. MR 0344413 (49:9152)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K99, 46G10, 46H99

Retrieve articles in all journals with MSC: 46K99, 46G10, 46H99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0586734-9
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society