Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Nonstandard analysis and lattice statistical mechanics: a variational principle

Author: A. E. Hurd
Journal: Trans. Amer. Math. Soc. 263 (1981), 89-110
MSC: Primary 82A68; Secondary 03H10, 28A20, 60K35
MathSciNet review: 590413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using nonstandard methods we construct a configuration space appropriate for the statistical mechanics of lattice systems with infinitely many particles and infinite volumes. Nonstandard representations of generalized equilibrium measures are obtained, yielding as a consequence a simple proof of the existence of standard equilibrium measures. As another application we establish an extension for generalized equilibrium measures of the basic variational principle of Landord and Ruelle. The same methods are applicable to continuous systems, and will be presented in a later paper.

References [Enhancements On Off] (What's this?)

  • [1] R. M. Anderson, A non-standard representation for Brownian Motion and Itô integration, Israel J. Math. 25 (1976), 15-46. MR 0464380 (57:4311)
  • [2] M. Davis, Applied nonstandard analysis, John Wiley, New York, 1977. MR 0505473 (58:21590)
  • [3] H. Föllmer and J. L. Snell, An "inner" variational principle for Markov fields, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), 187-196. MR 0445642 (56:3978)
  • [4] L. L. Helms and P. A. Loeb, Applications of nonstandard analysis to spin models, J. Math. Anal. Appl. 69 (1979), 341-352. MR 538222 (80d:82038)
  • [5] A. E. Hurd, Nonstandard models in nonequilibrium statistical mechanics, Notices Amer. Math. Soc. 24 (1977), A-506.
  • [6] H. Jerome Keisler, An infinitesimal approach to stochastic analysis (preprint). MR 732752 (86c:60086)
  • [7] O. E. Lanford III, Time evolution of large classical systems, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, vol. 38, Springer-Verlag, Berlin and New York, 1974. MR 0479206 (57:18653)
  • [8] O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194-215. MR 0256687 (41:1343)
  • [9] A. Lenard, States of classical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975), 219-239. MR 0391830 (52:12649)
  • [10] P. Loeb, Conversion from non-standard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. MR 0390154 (52:10980)
  • [11] R. A. Minlos, Lectures on statistical physics, Russian Math. Surveys 13 (1968), 137-196. MR 0223152 (36:6201)
  • [12] A. Ostebee, P. Gambardella and M. Dresden, Nonstandard approach to the thermodynamic limit. I, II, Phys. Rev. A 13 (1976), 878-881; J. Mathematical Phys. 17 (1976), 1570-1578. MR 0395505 (52:16302)
  • [13] C. Preston, Random fields, Lecture Notes in Mathematics, No. 534, Springer-Verlag, Berlin and New York, 1976. MR 0448630 (56:6936)
  • [14] A. Robinson, Non-standard analysis, Nederl. Akad. Wetensch. Proc. Ser. A 64 (1961), 432-440. MR 0142464 (26:33)
  • [15] -, Non-standard analysis, North-Holland, Amsterdam, 1970.
  • [16] D. Ruelle, Statistical mechanics, W. A. Benjamin, New York, 1969. MR 0289084 (44:6279)
  • [17] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, New York, 1976. MR 0491163 (58:10429)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 82A68, 03H10, 28A20, 60K35

Retrieve articles in all journals with MSC: 82A68, 03H10, 28A20, 60K35

Additional Information

Keywords: Lattice statistical mechanics, generalized equilibrium (Gibbs) state, variational principle, limiting configuration space
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society