Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stationary logic and ordinals


Author: D. G. Seese
Journal: Trans. Amer. Math. Soc. 263 (1981), 111-124
MSC: Primary 03C80
DOI: https://doi.org/10.1090/S0002-9947-1981-0590414-4
MathSciNet review: 590414
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ L({\mathbf{aa}})$-theory of ordinals is investigated. It is proved that this theory is decidable and that each ordinal is finitely determinate.


References [Enhancements On Off] (What's this?)

  • [1] J. Barwise, M. Kaufmann and M. Makkai, Stationary logic, Ann. Math. Logic 13 (1978), 171-224. MR 486629 (82f:03031a)
  • [2] A. Baudisch, The elementary theory of Abelian groups with $ m$-chains of pure subgroups, Fund. Math. (to appear).
  • [3] A. Baudisch, D. G. Seese, H. P. Tuschik and M. Weese, Decidability and generalized quantifiers, Akademie-Verlag, Berlin, 1980. MR 588326 (82i:03048)
  • [4] A. Baudisch and H. P. Tuschik, $ L({\mathbf{aa}}) = L({Q_1})$ for trees, unpublished manuscript, 1979.
  • [5] S. Ben-David, On Shelah's compactness of cardinals, Israel J. Math. 31 (1978), 34-56. MR 506381 (80f:03060a)
  • [6] X. Caicedo, A back-and-forth characterization of elementary equivalence in stationary logic, preprint, 1977.
  • [7] P. C. Eklof and A. H. Mekler, Stationary logic of finitely determinate structures, preprint, 1979. MR 556893 (82f:03033)
  • [8] H. Herre, A remark to a paper of D. Seese, unpublished manuscript, 1979.
  • [9] H. Herre and H. Wolter, Entscheidbarkeit der linearen Ordnung in $ {L_{{Q_1}}}$, Z. Math. Logik Grundlagen Math. 23 (1977), 273-282. MR 0446943 (56:5260)
  • [10] M. Kaufmann, Some results in stationary logic, Ph.D. Thesis, Univ. of Wisconsin, 1978.
  • [11] K. Kunen, Combinatorics, Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977, pp. 371-401. MR 0457132 (56:15351)
  • [12] H. Läuchli and J. Leonhard, On the elementary theory of linear order, Fund. Math. 59 (1966), 109-116.
  • [13] L. D. Lipner, Some aspects of generalized quantifiers, Doctoral Dissertation, Univ. of California, Berkeley, 1970.
  • [14] J. A. Makowsky, Elementary equivalence and definability in stationary logic, preprint, 1977.
  • [15] -, Quantifying over countable sets positive vs. stationary logic, Logic Colloquium '77, edited by A. Macintyre, L. Pacholski and J. Paris, North-Holland, Amsterdam, 1978, pp. 183-193. MR 519813 (80j:03052)
  • [16] A. Mekler, All ordinals are finitely determinate, notes, 1979.
  • [17] -, Every ordinal is finitely determinate. II, notes, 1979.
  • [18] -, Another linear order which is not finitely determinate, notes, 1979.
  • [19] M. O. Rabin, A simple method for undecidability proofs and some applications, Logic, Methodology and Philosophy of Science. II, edited by Y. Bar-Hillel, North-Holland, Amsterdam, 1964, pp. 58-68. MR 0221924 (36:4976)
  • [20] F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
  • [21] D. Seese, Decidability and generalized quantifiers, Logic Colloquium '77, edited by A. Macintyre, L. Pacholski and J. Paris, North-Holland, Amsterdam, 1978, pp. 229-237. MR 519818 (80b:03046)
  • [22] -, Stationäre Logik-Beschränkte Mengen-Entscheidbarkeit, Dissertation (B), Berlin, 1979.
  • [23] D. G. Seese, H. P. Tuschik and M. Weese, Linear orders and Boolean algebras in stationary logic, notes, 1979.
  • [24] D. G. Seese and M. Weese, Ehrenfeucht's game for stationary logic, unpublished notes, 1977.
  • [25] S. Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), 342-364. MR 0376334 (51:12510)
  • [26] -, The monadic theory of order, Ann. of Math. 102 (1975), 379-419. MR 0491120 (58:10390)
  • [27] H. P. Tuschik, On the decidability of the theory of linear orderings in the language $ L({Q_1})$, Lecture Notes in Math., vol. 619, Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 291-304. MR 0476475 (57:16037)
  • [28] -, On the decidability of the theory of linear orderings with generalized quantifiers, Fund. Math. (to appear). MR 584656 (81m:03016)
  • [29] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
  • [30] S. Vinner, A generalization of Ehrenfeucht's game and some applications, Israel J. Math. 12 (1972), 279-298. MR 0314591 (47:3142)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C80

Retrieve articles in all journals with MSC: 03C80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0590414-4
Keywords: Stationary logic, finitely determinate structure, ordinal, linear ordering
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society