Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the Picard group of a continuous trace $ C\sp{\ast} $-algebra

Author: Iain Raeburn
Journal: Trans. Amer. Math. Soc. 263 (1981), 183-205
MSC: Primary 46M20; Secondary 18F25, 46L05, 58G12
MathSciNet review: 590419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a continuous trace $ {C^\ast}$-algebra with paracompact spectrum $ T$, and let $ C(T)$ be the algebra of bounded continuous functions on $ T$, so that $ C(T)$ acts on $ A$ in a natural way. An $ A - A$ bimodule $ X$ is an $ A{ - _{C(T)}}A$ imprimitivity bimodule if it is an $ A - A$ imprimitivity bimodule in the sense of Rieffel and the induced actions of $ C(T)$ on the left and right of $ X$ agree. We denote by $ {\text{Pi}}{{\text{c}}_{C(T)}}A$ the group of isomorphism classes of $ A{ - _{C(T)}}A$ imprimitivity bimodules under $ { \otimes _A}$. Our main theorem asserts that $ {\text{Pi}}{{\text{c}}_{C(T)}}A \cong {\text{Pi}}{{\text{c}}_{C(T)}}{C_0}(T)$. This result is well known to algebraists if $ A$ is an $ n$-homogeneous $ {C^\ast}$-algebra with identity, and if $ A$ is separable it can be deduced from two recent descriptions of the automorphism group $ {\text{Au}}{{\text{t}}_{C(T)}}A$ due to Brown, Green and Rieffel on the one hand and Phillips and Raeburn on the other. Our main motivation was to provide a direct link between these two characterisations of $ {\text{Au}}{{\text{t}}_{C(T)}}A$.

References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Topics in algebraic $ K$-theory, Tata Institute of Fundamental Research, Bombay, 1967.
  • [2] -, Algebraic $ K$-theory, Benjamin, New York, 1968.
  • [3] Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of 𝐶*-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 0463928
  • [4] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
  • [5] J. Dixmier, Champs continus d’espaces hilbertiens et de 𝐶*-algèbres. II, J. Math. Pures Appl. (9) 42 (1963), 1–20 (French). MR 0150608
  • [6] J. Dixmier, Ideal center of a 𝐶*-algebra, Duke Math. J. 35 (1968), 375–382. MR 0230138
  • [7] -, $ {C^ \ast }$-algebras, North-Holland, Amsterdam, 1977.
  • [8] Ru Ying Lee, On the 𝐶*-algebras of operator fields, Indiana Univ. Math. J. 25 (1976), no. 4, 303–314. MR 0410400
  • [9] John Phillips and Iain Raeburn, Automorphisms of 𝐶*-algebras and second Čech cohomology, Indiana Univ. Math. J. 29 (1980), no. 6, 799–822. MR 589649, 10.1512/iumj.1980.29.29058
  • [10] -, Perturbations of $ {C^ \ast }$-algebras. II, Proc. London Math. Soc. (to appear).
  • [11] M. A. Rieffel, Induced representation of $ {C^ \ast }$-algebras, Advances in Math. 13 (1974), 176-257.
  • [12] Marc A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43–82. MR 546802

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46M20, 18F25, 46L05, 58G12

Retrieve articles in all journals with MSC: 46M20, 18F25, 46L05, 58G12

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society