Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Holomorphic actions of $ {\rm Sp}(n,\,{\bf R})$ with noncompact isotropy groups


Author: Hugo Rossi
Journal: Trans. Amer. Math. Soc. 263 (1981), 207-230
MSC: Primary 22E30; Secondary 32N10
DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
MathSciNet review: 590420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ U(p,q)$ is a subgroup of $ {S_p}(n,R)$, for $ p + q = n$. $ {B_q} = {S_p}(n,r)/U(p,q)$ is realized as an open subset of the manifold of Lagrangian subspaces of $ {{\mathbf{C}}^n} \times {{\mathbf{C}}^n}$. It is shown that $ {B_q}$ carries a $ (pq)$-pseudoconvex exhaustion function. $ {B_{pq}} = {S_p}(n,r)/U(p) \times U(q)$ carries two distinct holomorphic structures making the projection to $ {B_q}$, $ {B_0}$ holomorphic respectively. The geometry of the correspondence between $ {B_q}$ and $ {B_0}$ via $ {B_{pq}}$ is investigated.


References [Enhancements On Off] (What's this?)

  • [1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. MR 0150342 (27:343)
  • [2] A. Andreotti and F. Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Pisa Cl. Sci. 20 (1966), 197-241. MR 0199439 (33:7583)
  • [3] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [4] L. Auslander and B. Kostant, Polarizations and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354. MR 0293012 (45:2092)
  • [5] P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253-301. MR 0259958 (41:4587)
  • [6] V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys, vol. 14, Amer. Math. Soc., Providence, R. I., 1977. MR 0516965 (58:24404)
  • [7] L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, Princeton, N. J., 1966.
  • [8] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. (2) 75 (1962), 146-162. MR 0133841 (24:A3665b)
  • [9] B. Kostant, Quantization and unitary representations, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin and New York, 1970. MR 0294568 (45:3638)
  • [10] Y. Matsushima, On the intermediate cohomology group of a holomorphic line bundle over a complex torus (preprint). MR 551580 (80j:32046)
  • [11] H. K. Nickerson, D. C. Spencer and N. E. Steenrod, Advanced calculus, Van Nostrand, Princeton, N. J., 1959. MR 0123651 (23:A976)
  • [12] H. Rossi and M. Vergne, Group representations on Hilbert spaces defined in terms of $ {\partial _b}$-cohomology on the Silov boundary of a Siegel domain, Pacific J. Math. 65 (1976), 193-207. MR 0422517 (54:10504)
  • [13] C. L. Siegel, Topics in complex function theory. III, Interscience, New York, 1973.
  • [14] S. Sternberg, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 113-130. MR 0379759 (52:664)
  • [15] R. Tolimieri, Heisenberg manifolds and theta functions, Trans. Amer. Math. Soc. 239 (1978), 293-319. MR 487050 (81d:22012)
  • [16] R. O. Wells, Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 196-336. MR 520077 (80h:32001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30, 32N10

Retrieve articles in all journals with MSC: 22E30, 32N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society