Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Plane models for Riemann surfaces admitting certain half-canonical linear series. II


Author: Robert D. M. Accola
Journal: Trans. Amer. Math. Soc. 263 (1981), 243-259
MSC: Primary 14H15; Secondary 30F20, 32G15
DOI: https://doi.org/10.1090/S0002-9947-1981-0590422-3
MathSciNet review: 590422
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ r \geqslant 2$, closed Riemann surfaces of genus $ 3r + 2$ admitting two simple half-canonical linear series $ g_{3r + 1}^r,h_{3r + 1}^r$ are characterized by the existence of certain plane models of degree $ 2r + 3$ where the linear series are apparent. The plane curves have $ r - 2$ $ 3$-fold singularities, one $ (2r - 1)$-fold singularity $ Q$, and two other double points (typically tacnodes) whose tangents pass through $ Q$. The lines through $ Q$ cut out a $ g_4^1$ which is unique. The case where the $ g_4^1$ is the set of orbits of a noncyclic group of automorphisms of order four is characterized by the existence of $ 3r + 3$ pairs of half-canonical linear series of dimension $ r - 1$, where the sum of the two linear series in any pair is linearly equivalent to $ g_{3r + 1}^r + h_{3r + 1}^r$.


References [Enhancements On Off] (What's this?)

  • [1] R. D. M. Accola, Riemann surfaces with automorphism groups admitting partitions, Proc. Amer. Math. Soc. 21 (1969), 477-482. MR 0237764 (38:6045)
  • [2] -, Algebraic curves and half-canonical linear series, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, no. 79, Princeton Univ. Press, Princeton, N. J., 1974, pp. 13-22. MR 0354679 (50:7157)
  • [3] -, Some loci of Teichmüller space for genus five defined by vanishing theta nulls, in Contributions to Analysis, Academic Press, New York and London, 1974, pp. 11-18. MR 0374411 (51:10611)
  • [4] -, Riemann surfaces, theta functions and abelian automorphism groups, Lecture Notes in Math., vol. 483, Springer-Verlag, Berlin and New York, 1975. MR 0470198 (57:9958)
  • [5] -, On Castelnuovo's inequality for algebraic curves. I, Trans. Amer. Math. Soc. 251 (1979), 357-363. MR 531984 (80i:14008)
  • [6] -, Plane models for Riemann surfaces admitting certain half-canonical linear series. I (Proc. Conference on Riemann surfaces, June 1978).
  • [7] G. Castelnuovo, Richerche di geometria sulle curve algebriche, Atti Accad. Sci. Torino 24 (1889).
  • [8] -, Sur multipli du una serie lineare di gruppi di punti, etc., Rend. Circ. Mat. Palermo 7 (1893), 89-110.
  • [9] J. L. Coolidge, Algebraic plane curves, Dover, Oxford, 1931.
  • [10] H. M. Farkas, Automorphisms of compact Riemann surfaces and the vanishing of theta constants, Bull. Amer. Math. Soc. 73 (1967), 231-232. MR 0213547 (35:4407)
  • [11] L. Kraus, Note über ausgewohnliche special Gruppen auf algebraischen Kurven, Math. Ann. 15 (1880), 310.
  • [12] H. H. Martens, On the varieties of special divisors on a curve. II, J. Reine Angew. Math. 233 (1968), 89-100. MR 0241420 (39:2760)
  • [13] B. Riemann, Gesammelte mathematische Werke, Dover, New York, 1953. MR 0052364 (14:610a)
  • [14] R. Walker, Algebraic curves, Princeton Math. Series, vol. 13, Princeton Univ. Press, Princeton, N. J., 1950. MR 0033083 (11:387e)
  • [15] H. Weber, Über Gewisse in der Theorie der Abel' schen Funktionen, auftretende Ausnahmfalle, Math. Ann. 13 (1878), 35-48. MR 1509953

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H15, 30F20, 32G15

Retrieve articles in all journals with MSC: 14H15, 30F20, 32G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0590422-3
Keywords: Riemann surface, linear series, algebraic curve, automorphism
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society