Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Capacity densities and angular limits of quasiregular mappings


Author: Matti Vuorinen
Journal: Trans. Amer. Math. Soc. 263 (1981), 343-354
MSC: Primary 30C60
DOI: https://doi.org/10.1090/S0002-9947-1981-0594412-6
MathSciNet review: 594412
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if a bounded quasiregular mapping of the unit ball $ {B^n} \subset {R^n}$, $ n \geqslant 2$, has a limit at $ b \in \partial {B^n}$ through a set $ E \subset {B^n}$ with $ b \in \bar E$, then it has an angular limit at $ b$ provided that $ E$ is contained in an open cone $ C \subset {B^n}$ with vertex $ b$ and that $ E$ is thick enough at $ b$. The thickness condition is expressed in terms of the $ n$-capacity density.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74. MR 581801 (81k:30023)
  • [2] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199. MR 0437753 (55:10676)
  • [3] N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der math. Wissenschaften, Band 180, Springer-Verlag, Berlin, New York and Heidelberg, 1972. MR 0350027 (50:2520)
  • [4] O. Martio, Equicontinuity theorem with an application to variational integrals, Duke Math. J. 42 (1975), 569-581. MR 0380599 (52:1498)
  • [5] -, Capacity and measure densities, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978/1979), 109-118. MR 538093 (81b:31007)
  • [6] O. Martio and S. Rickman, Boundary behavior of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 507 (1972), 1-17. MR 0379846 (52:751)
  • [7] O. Martio, S. Rickman and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 448 (1969), 1-40. MR 0259114 (41:3756)
  • [8] -, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 465 (1970), 1-13. MR 0267093 (42:1995)
  • [9] O. Martio and J. Sarvas, Density conditions in the $ n$-capacity, Indiana Univ. Math. J. 26 (1977), 761-776. MR 0477038 (57:16582)
  • [10] R. Näkki, Extension of Loewner's capacity theorem, Trans. Amer. Math. Soc. 180 (1973), 229-236. MR 0328062 (48:6404)
  • [11] M. Ohtsuka, Dirichlet problem, extremal length, and prime ends, Van Nostrand Reinhold, New York, 1970.
  • [12] S. Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100-117. MR 583633 (81m:30030)
  • [13] -, Asymptotic values and angular limits of quasiregular mappings of a ball, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 185-196. MR 595190 (82b:30019)
  • [14] J. Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin, New York and Heidelberg, 1971.
  • [15] -, A survey of quasiregular maps in $ {R^n}$, Proc. 1978 Internat. Congr. Math. (Helsinki, Finland), Finnish Academy of Science and Letters, Helsinki, 1980.
  • [16] M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $ n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 11 (1976), 1-44. MR 0437757 (55:10680)
  • [17] -, On the existence of angular limits of $ n$-dimensional quasiconformal mappings, Ark. Mat. (to appear).
  • [18] -, On the boundary behavior of locally $ K$-quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 79-95. MR 595179 (82c:30032)
  • [19] -, Lindelöf-type theorems for quasiconformal and quasiregular mappings, Proc. Complex Analysis Semester, Banach Center, Warsaw, Poland, 1979 (to appear).
  • [20] W. P. Ziemer, Extremal length and $ p$-capacity, Michigan Math. J. 16 (1969), 43-51. MR 0247077 (40:346)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C60

Retrieve articles in all journals with MSC: 30C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0594412-6
Keywords: Quasiconformal and quasiregular mappings, boundary behavior, angular limits
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society