Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Maximum principles for degenerate elliptic-parabolic equations with Venttsel's boundary condition


Author: Kazuo Amano
Journal: Trans. Amer. Math. Soc. 263 (1981), 377-396
MSC: Primary 35J70; Secondary 35B50, 58G32, 60J60
DOI: https://doi.org/10.1090/S0002-9947-1981-0594415-1
MathSciNet review: 594415
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we first establish interior and boundary maximum principles for degenerate elliptic-parabolic equations; we state both principles in one single theorem in terms of the propagation set (cf. Theorem 1). We next generalize the boundary condition to Venttsel's one and obtain the similar result (cf. Theorem 2). Venttsel''s boundary condition contains Dirichlet, Neumann, oblique derivative and mixed boundary conditions as special cases and, from a probabilistic point of view (cf. Venttsel' [9]), it is the most general admissible boundary condition. We give several examples in the last section.


References [Enhancements On Off] (What's this?)

  • [1] K. Amano, Maximum principles for degenerate elliptic-parabolic operators, Indiana Univ. Math. J. 28 (1979), 545-557. MR 542943 (81k:35065)
  • [2] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénéré, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. MR 0262881 (41:7486)
  • [3] G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, Boundary Value Problems in Differential Equations, Univ. of Wisconsin Press, Madison, 1960, pp. 97-120. MR 0111931 (22:2789)
  • [4] C. D. Hill, A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970), 213-229. MR 0287175 (44:4382)
  • [5] S. E. Myers, A boundary maximum principle for degenerate elliptic-parabolic inequalities for characteristic boundary points, Bull. Amer. Math. Soc. 80 (1974), 527-530. MR 0336070 (49:846)
  • [6] O. A. Oleinik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, R. I., and Plenum Press, New York, 1973. MR 0457908 (56:16112)
  • [7] R. M. Redheffer, The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971), 227-248. MR 0422864 (54:10850)
  • [8] D. W. Strook and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651-713. MR 0387812 (52:8651)
  • [9] A. D. Venttsel', On boundary conditions for multi-dimensional diffusion processes, Theor. Probability Appl. 4 (1959), 164-177. MR 0121855 (22:12585)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J70, 35B50, 58G32, 60J60

Retrieve articles in all journals with MSC: 35J70, 35B50, 58G32, 60J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0594415-1
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society