THE GENUS OF A MAP

BY

SARA HURVITZ

Abstract. The elements \([f'] \in G(f)\) of the genus \(-G(f)\) of a map \(f: X \to Y\) are equivalence classes of homotopy classes of maps \(f'\) which satisfy: For every prime \(p\) there exist homotopy equivalences \(k_p: X'_p \to X_p\) and \(k'_p: Y'_p \to Y_p\) so that \(f'_p h'_p \sim k'_p f'_p\). The genus of \(f\) under \(X = G^X(f)\) and the genus of \(f\) over \(Y = G^Y(f)\) are defined similarly.

In this paper we prove that under certain conditions on \(f\), the sets \(G(f)\), \(G^X(f)\) and \(G^Y(f)\) are finite and admit an abelian group structure. We also compare the genus of \(f\) to those of \(X\) and \(Y\), calculate it for some principal fibrations of the form \(K(G, n - 1) \to X \to Y\), and deal with the noncancellation phenomenon.

1. Introduction. In this paper we use the structure of the genus of an \(H_0\)-space, which was investigated by Zabrodsky [8], to study the structure of the genus of a map \(f: X \to Y\). In some cases we calculate the genus and compare it with those of \(X\) and \(Y\).

All spaces considered are pointed and of the homotopy type of simply connected CW-complexes of finite type and either with a finite number of nonzero homology groups or with a finite number of nonzero homotopy groups.

Throughout this paper we work in the homotopy category. We recall that for a CW-complex \(X\), the genus of \(X\) is the set \(G(X)\) of homotopy types of spaces \(Y\) with \(Y_p \approx X_p\) for every prime \(p\) (where \((\)_p\) denotes the \(p\)-localization operation). We define analogously the genus \(G(f)\) of \(f\), \(G^X(f)\)--the genus of maps under \(X\) and \(G^Y(f)\) the genus of maps over \(Y\).

1.1. Definition. Let \(f: X \to Y\) be a map. The elements \([f'] \in G(f)\) are equivalence classes of homotopy classes of maps \(f'\) which satisfy: For every prime \(p\) there exist homotopy equivalences \(k_p: X'_p \to X_p\) and \(k'_p: Y'_p \to Y_p\) so that \(f'_p h'_p \sim k'_p f'_p\). (We denote the genus of \(f\) either by \(G(f)\) or by \(G(X, Y, f)\).)

The elements \([f'] \in G^X(f)\) are equivalence classes of homotopy classes of maps \(f'\) which satisfy: For every prime \(p\) there exists a homotopy equivalence \(k'_p: Y'_p \to Y_p\) so that \(k'_p f'_p \sim f'_p\). (Two maps \(f_i: X \to Y_i\), \(i = 1, 2\), are equivalent under \(X\) if there exists a homotopy equivalence \(k: Y_1 \to Y_2\) with \(k f_1 \sim f_2\).

The elements \([f'] \in G^Y(f)\) are equivalence classes of homotopy classes of maps \(f'\) so that for every prime \(p\) there exists a homotopy equivalence \(h'_p: X'_p \to X_p\) so that \(f'_p h'_p \sim f'_p\).

To state the main results of this study we need the following notations: Let \(t\) be an integer, \(X\) a space and \(f: X \to Y\) a map. Denote by \(Z_t\) the group \(Z/\langle t \rangle\), by \(Z^*_t\)

Received by the editors December 5, 1978 and, in revised form, September 26, 1979.

the units in \(Z_n \), by \(l(X) \) the number of integers \(n \) with \(QH^n(X, Q) \neq 0 \) and by \([f, f] \), the set of pairs \((h, k) \) of \(\iota \)-equivalences \(h: X \to X, k: Y \to Y \) satisfying \(kf \sim fh \). (A \(\iota \)-equivalence of \(X \) is a map \(f: X \to X \) so that \(H^\iota(f, Z) \otimes Z_p \) is an isomorphism for every prime \(p \) which divides \(t \).)

THEOREM I. Let \(f: X \to Y \) be a map which satisfies one of the following conditions:

(a) \(f: X \to Y \) is an \(H \)-map, \(H^*(X, Q) \) and \(H^*(Y, Q) \) are primitively generated and \(H^*(f, Q) \) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) \(X = S^{2n-1} \), \(Y \) is an \(H \)-space and \(H^*(Y, Q) \) is primitively generated.

(c) \(X = S^{2m-1} \), \(Y = S^{2m-1} \).

Then \(G(f) \) admits an abelian group structure and there exist integers \(k \) and \(i \) (depending on \(X, Y \) and \(f \)) and an exact sequence

\[
[f, f] \xrightarrow{\alpha^i} [(Z^*_f)/\pm 1]^k \to G(f) \to 0
\]

where \(\alpha^i \) is the composition

\[
[f, f] \xrightarrow{\text{aut}(QH^*(X, Z)/\text{torsion} \otimes Z_i) \times \text{aut}(QH^*(Y, Z)/\text{torsion} \otimes Z_i)} \xrightarrow{[\det] \times [\det]} [(Z^*_f)/\pm 1]^{l(X)+l(Y)} \to [(Z^*_f)/\pm 1]^k.
\]

THEOREM II. If \(f: X \to Y \) is a map satisfying the conditions of Theorem I then \(G_\iota(f) \) admits an abelian group structure and there exist an integer \(i \) depending on \(X, Y \) and \(f \) and an exact sequence

\[
[f, f] \xrightarrow{\alpha^i} [(Z^*_f)/\pm 1]^{l(X)} \to G_\iota(f) \to 0
\]

where \([f, f] = \{(h, 1) \in [f, f]_i\} \).

THEOREM III. Let \(f: X \to Y \) be a map satisfying one of the following conditions:

(a) \(X, Y \) are \(H \)-spaces; \(H^*(X, Q) \) and \(H^*(Y, Q) \) are primitively generated, and \(H^*(f, Q) \) is either a monomorphism, an epimorphism, an isomorphism or zero.

(b) \(X = S^{2n-1} \), \(Y \) is an \(H \)-space, and \(H^*(Y, Q) \) is primitively generated.

Then \(G^X(f) \) admits an abelian group structure and there exist an integer \(i \) depending on \(X, Y \) and \(f \) and an exact sequence

\[
[f, f] \xrightarrow{\alpha^i} [(Z^*_f)/\pm 1]^{l(Y)} \to G^X(f) \to 0
\]

where \([f, f] = \{(1, k) \in [f, f]_i\} \).

The proof of Theorem I relies heavily on the fact that for maps which satisfy the conditions of Theorem I, a map \(f' \): \(X' \to Y' \) belongs to the genus of the map \(f: X \to Y \) iff for every prime \(p \) there exist \(p \)-equivalences \(h: X' \to X, k: Y' \to Y \) so that \(fh \sim kf' \). The proofs of Theorems II and III rely on similar facts. These facts are proved in \(\S 2 \). The main theorems are proved in \(\S 3 \). In \(\S 4 \) some simple conclusions are derived. \(\S 5 \) deals with the kernel of the obvious map \(G(X, Y, f) \to G(X) \times G(Y) \) and \(\S 6 \) applies this map and the main theorems to calculate the genus of some principal fibrations of the form \(K(G, n - 1) \to X \to Y \). The last section, \(\S 7 \), deals with the noncancellation phenomenon.
This paper constitutes a part of the author’s Ph.D. thesis written at the Hebrew University under the supervision of Professor A. Zabrodsky. It is a pleasure to thank Professor Zabrodsky for his useful advice.

2. Localization and p-equivalences. Let \((X, \mu)\) be an \(H\)-space and let \((Y, \psi)\) be a co-\(H\)-space. We shall denote by + the operation on \([Z, X]\) and \([Y, Z]\) induced by \(\mu\) and \(\psi\), respectively, by \(\phi_n\) the \(n\)-power map

\[
\phi_n = \mu(\mu \times 1) \cdot \cdot \cdot (\mu \times 1 \times \cdots \times 1) \circ (\Delta \times 1 \times \cdots \times 1) \cdot \cdots \Delta
\]

\((\Delta - \text{the diagonal})\)

and by \(\eta_n\) the map

\[
\eta_n = \psi \cdot \cdot \cdot (\psi \vee 1 \vee \cdots \vee 1) \circ (\psi \vee 1 \vee \cdots \vee 1) \cdot \cdots (\psi \vee 1)\psi
\]

\((\vee - \text{the folding map})\).

2.1. Theorems (Hilton, Mislin, Roitberg, see [3, II, 6]). Let \(X\) be a connected \(H\)-space and \(W\) a space with a finite number of homology groups. For every map \(f: W_p \rightarrow X_p\) there exist an integer \(n\), \((n, p) = 1\), and a function \(g: W \rightarrow X\) so that \(g_p \sim \phi_n f_p\).

Moreover, given two functions \(f, g: W \rightarrow X\) so that \(f_p \sim g_p\), there exists an integer \(m\), \((m, p) = 1\), so that \(\phi_m f \sim \phi_m g\).

2.2. Theorem. Let \(f: X \rightarrow Y\) be a map and let \(l\) be an integer. Suppose \(l = p_1^{m_1} \cdots p_s^{m_s}\).

(a) If \(f\) is an \(H\)-map then:

1. Given two spaces \(X', Y'\), a function \(f': X' \rightarrow Y'\) and homotopy equivalences \(h_{p_i}: X_{p_i} \rightarrow X_{p_i}\), \(k_{p_i}: Y_{p_i} \rightarrow Y_{p_i}\) satisfying \(f'_p h_{p_i} \sim k_{p_i} f'_{p_i}\) \((r = 1, \ldots, s)\), there exist \(l\)-equivalences \(h: X' \rightarrow X\), \(k: Y' \rightarrow Y\) so that \(f h \sim k f'\).

2. Given a map \(f': X' \rightarrow Y\) in \(G_Y(f)\), there exists an \(l\)-equivalence \(h: X' \rightarrow X\) so that \(fh \sim f'\).

3. Given a map \(f': X \rightarrow Y'\) in \(G_X(f)\), there exists an \(l\)-equivalence \(k: Y' \rightarrow Y\) so that \(kf \sim f\).

(b) If \(Y\) is an \(H\)-space and \(X = SX''\) then:

1. Given two spaces \(X', Y'\), a function \(f': SX' \rightarrow Y'\) and homotopy equivalences \(h_{p_i}: (SX')_{p_i} \rightarrow X_{p_i}\), \(k_{p_i}: Y'_{p_i} \rightarrow Y_{p_i}\) satisfying \(f'_p h_{p_i} \sim k_{p_i} f'_{p_i}\) \((i = 1, \ldots, s)\), there exist \(l\)-equivalences \(h: SX' \rightarrow X\), \(k: Y' \rightarrow Y\) so that \(fh \sim k f'\).

2. Given a map \(f: SX' \rightarrow Y\) in \(G_Y(f)\), there exists an \(l\)-equivalence \(h: SX' \rightarrow X\) so that \(fh \sim f'\).

3. Given a map \(f': X \rightarrow Y'\) in \(G_X(f)\), there exists an \(l\)-equivalence \(k: Y' \rightarrow Y\) so that \(kf \sim f\).

(c) If \(X = S^n\) and \(Y = S^{2m-1}\) then:

1. Given a function \(f': X \rightarrow Y\) and homotopy equivalences \(h_{p_i}: X_{p_i} \rightarrow X_{p_i}\), \(k_{p_i}: Y_{p_i} \rightarrow Y_{p_i}\) satisfying \(f'_p h_{p_i} \sim k_{p_i} f'_{p_i}\) \((i = 1, \ldots, s)\) there exist \(l\)-equivalences \(h: X \rightarrow X\), \(k: Y \rightarrow Y\) so that \(fh \sim k f'\).

2. Given a map \(f': X \rightarrow Y'\) in \(G_Y(f)\) there exists an \(l\)-equivalence \(h: X \rightarrow X\) so that \(fh \sim f'\).
Proof. (a) (1) Since X and Y are H-spaces, by 2.1, for every i there exist integers $n_{1,i}$, $n_{2,i}$, $(n_{1,i}, p_i) = (n_{2,i}, p_i) = 1$, so that $\phi_{n_{1,i}} \circ h_p$ and $\phi_{n_{2,i}} \circ k_p$ are induced by functions $h'_i: X' \to X$ and $k'_i: Y' \to Y$.

As f is an H-map, for every i, the p-localization of $f(\phi_{n_{1,i}} \circ h'_i)$ and $(\phi_{n_{2,i}} \circ k'_i)f'$ are homotopic:

\[
\begin{array}{ccc}
X'_{p_i} & \xrightarrow{h_{p_i}} & X_{p_i} \\
\downarrow f'_{p_i} & & \downarrow f_{p_i} \\
Y'_{p_i} & \xrightarrow{k_{p_i}} & Y_{p_i}
\end{array}
\]

Hence, there exist integers n_i, $(n_i, p_i) = 1$, so that

\[
(\phi_{n_i} \circ h'_i)f' \sim \phi_{n_i}(\phi_{n_{1,i}} \circ h'_i)f' \sim \phi_{n_i}f(\phi_{n_{1,i}} \circ h'_i) \sim f(\phi_{n_{1,i}} \circ h'_i).
\]

Define $m = \prod_{i=1}^r p_i$, $h'' = \phi_{m/p_i} \phi_{n_{1,i}} h'_i$, $k'' = \phi_{n_{2,i}} h'_i$, $f'' = f_{p_i}$, and $f''' = f_{p_i}$. Then $h = \Sigma_{i=1}^r h''_i$ and $k = \Sigma_{i=1}^r k''_i$ are the desired maps. Indeed since $\sigma_*(h) \otimes Z_{p_i} = \Sigma_i \sigma_*(h''_i) \otimes Z_{p_i} = \sigma_*(h''_i) \otimes Z_{p_i}$ and h''_i is a p_i-equivalence, h is an l-equivalence. Similarly one gets that k is an l-equivalence. It is clear that $fh \sim kf'$.

(2) Since for every p_i there exists a homotopy equivalence $\phi_{m/p_i}: X'_{p_i} \to X_{p_i}$ satisfying $f_{p_i} \phi_{m/p_i} \sim f_{p_i}'$ by (1), it follows from (1) that there exists an integer n_i, $(n_i, l) = 1$, and an l-equivalence $h': X' \to X$ so that $fh' \sim \phi_{m}f'$.

Assume that $n = q_1^{a_1} \cdots q_r^{a_r}$ where every q_i is a prime. Since for every q_i there exists a homotopy equivalence $h_{q_i}: X'_{q_i} \to X_{q_i}$ satisfying $f_{q_i} h_{q_i} \sim f_{q_i}'$, it follows from (1) that there exists an integer m, $(m, n) = 1$, and an l-equivalence $h''': X' \to X$ so that $fh''' \sim \phi_{m}f'$.

Let a and b be integers satisfying $an + blm = 1$. Define $h: X' \to X$ by $h = \phi_a h' + \phi_b h'''$. Since $\sigma_*(h) \otimes Z_l = \sigma_*(\phi_a h') \otimes Z_l$ and h' is an l-equivalence, h is an l-equivalence. But $fh = f(\phi_a h' + \phi_b h''') \sim \phi_a fh' + \phi_b h''' \sim \phi_a \phi_m f' + \phi_b \phi_m f'' \sim \phi_{an + blm} f' \sim f'$; hence h is the desired map.

(3) is proved similarly.

(b) (1) Since Y is an H-space and $(SX')_{p_i} = SX'_{p_i}$, there exist integers $n_{1,i}$, $n_{2,i}$, $(n_{1,i}, p_i) = (n_{2,i}, p_i) = 1$, so that the maps $h_{p_i} \eta_{n_{1,i}}$ and $\phi_{n_{2,i}} k_{p_i}$ are induced by maps $h'_i: SX' \to X$ and $k'_i: Y' \to Y$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Consider the following diagram:

\[
\begin{array}{c}
\xymatrix{
SX'_{p_i} \ar[r]^{\eta_{n_1,i}} & SX'_{p_i} \ar[r]^{h_{p_i}} & X_{p_i} \\
\ar[d]^{f'_{p_i}} & \ar[d]^{f_{p_i}} \\
Y'_{p_i} \ar[r]^{k_{p_i}} & Y_{p_i} \ar[r]^{\phi_{n_1,i}} & Y_{p_i} \\
& \phi_{n_1,i}(k_i'_{p_i}) &
}
\end{array}
\]

Since \(f_{p_i}h_{p_i}^*\eta_{n_1,i}\eta_{n_2,i} \sim \phi_{n_1,i}\phi_{n_2,i}k_{p_i}f'_{p_i} \), for every \(i \) the \(p_i \)-localization of \(f(h_i'\eta_{n_2,i}) \) and \((\phi_{n_1,i}k_i')f' \) are homotopic. Therefore there exist integers \(n_i, (n_i, p_i) = 1 \), so that

\[
(\phi_{n_i}\phi_{n_1,i}k_i')f' \sim \phi_{n_i}(\phi_{n_1,i}k_i')f' \sim \phi_{n_i}(f h_i'\eta_{n_2,i}) \sim f(h_i'\eta_{n_2,i})\eta_n.
\]

Define \(m = \prod_{i=1}^t p_i \),

\[
h_i'' = h_i'\eta_{n_2,n_m/p_i}, \quad k_i' = \phi_m/p_i\phi_{n_1,i}k_i'.
\]

Then \(h = \Sigma_i h_i'' \) and \(k = \Sigma_i k_i'' \) are the desired maps: \(h \) and \(k \) are obviously \(l \)-equivalences and \(fh \sim kf' \).

(2) and (3) follow from (1) in the same way that (2) and (3) of part (a) follow from (1) of part (a).

(c) (1) Choose localizations \(\varphi_i: S^n \to S^n_{p_i} \), \(\psi_i: S^{2m-1} \to S^{2m-1}_{p_i} \) so that the following diagram is commutative:

\[
\begin{array}{c}
\xymatrix{
S_n \ar[r]^{\varphi_i} & S^n_{p_i} \ar[r]^{h_{p_i}} & S^n_{p_i} \\
\downarrow f' & \downarrow f_{p_i} & \downarrow f_{p_i} \\
S^{2m-1} \ar[r]^{\psi_i} & S^{2m-1}_{p_i} \ar[r]^{k_{p_i}} & S^{2m-1}_{p_i}
}
\end{array}
\]

Since \(h_{p_i}\varphi_i \in (\pi_nS^n)_{p_i} \) and \(k_{p_i}\psi_i \in (\pi_{2m-1}S^{2m-1})_{p_i} \), for every \(i \), there exists an integer \(v_i, (v_i, p_i) = 1 \), so that \(h_{p_i}\varphi_i\eta_i \) and \(k_{p_i}\psi_i\eta_i \) are induced by maps \(h_i: S^n \to S^n \) and \(k_i: S^{2m-1} \to S^{2m-1} \).
Consider the following diagram:

\[
\begin{array}{cccc}
S^n & \sim & \tilde{h}_i & \sim & S^n \\
\downarrow \eta_{vi} & & \downarrow \varphi_i & & \downarrow \varphi_i \\
S^n & \sim & \tilde{h}_p & \sim & S^n \\
\downarrow f' & & \downarrow f' & & \downarrow f' \\
S^{2m-1} & \sim & \tilde{k}_i & \sim & S^{2m-1} \\
\downarrow \eta_{vi} & & \downarrow \psi_i & & \downarrow \psi_i \\
S^{2m-1} & \sim & \tilde{k}_p & \sim & S^{2m-1} \\
\end{array}
\]

For \(n = 2m - 1 \) the diagram commutes; hence in this case \(f_p(h_i)p_i \sim (k_i)p_if_i' \). For \(n > 2m - 1 \) the two squares and all the rectangles except the left one are commutative. Therefore in order to prove the existence of \(p_i \)-equivalences, \(h_i': S^n \to S^n \) and \(k_i': S^{2m-1} \to S^{2m-1} \) so that \(f_p(h_i)p_i \sim (k_i)f_i'p_i' \), it suffices to prove

2.1.1. Lemma. For every map \(f': S^n \to S^{2m-1} \) and every integer \(v \), there exists an integer \(t \) so that \(\eta_vf' \sim f'\eta_v \).

Proof of 2.1.1. Let \(f_1, f_2: S^n \to S^{2m-1} \) be arbitrary maps. Consider the diagram:

\[
\begin{array}{cccc}
S^n & \eta_v & \sim & S^n \\
\downarrow \psi & & \downarrow \psi & & \downarrow \psi \\
S^n \vee S^n & \eta_v \vee \eta_v & \to & S^n \vee S^n \\
\downarrow f_1 \vee f_2 & & \downarrow f_1 \vee f_2 & & \downarrow f_1 \vee f_2 \\
S^{2m-1} \vee S^{2m-1} & \eta_v \vee \eta_v & \to & S^{2m-1} \vee S^{2m-1} \\
\downarrow \eta_v \vee \eta_v & & \downarrow \eta_v \vee \eta_v & & \downarrow \eta_v \vee \eta_v \\
S^{2m-1} \vee S^{2m-1} & \eta_v \vee \eta_v & \to & S^{2m-1} \vee S^{2m-1} \\
\end{array}
\]

Obviously the right-hand square is commutative. Considering the homology homomorphisms one can easily see that the left-hand square is commutative as well. Hence \(\eta_v(f_1 + f_2) \sim \eta_vf_1 + \eta_vf_2 \) and \((f_1 + f_2)\eta_v \sim f_1\eta_v + f_2\eta_v \).

Since the order of \(f': S^n \to S^{2m-1} \) is finite there exist \(f_1, f_2: S^n \to S^{2m-1} \) satisfying \(f' = f_1 + f_2 \), \(|f_1|, v = 1 \) and \(|f_2|/v^a \) (for some integer \(a \)). Hence \(f_2\eta_{v^a} \sim \ast \). As for every \(p_j, p_j/v, H^*(\eta_v, Z_p) = 0 \), there exists an integer \(b \) so that, for every \(p_j/v, \pi_*(\eta_v, Z_p) = 0 \) (Zabrodsky [9, proof of Theorem 4.1.4]). Hence for every \(p_j/v, 0 = (\eta_v)_*: \pi_*(S^{2m-1} \otimes Z_p) \to \pi_*(S^{2m-1} \otimes Z_p) \). Consequently there exists an integer \(c \) so that \(0 = (\eta_v)_*: |f_1|\pi_*(S^{2m-1} \otimes Z_p) \to |f_1|\pi_*(S^{2m-1} \otimes Z_p) \). Define \(d = abc \).

Obviously for every \(d' > d, (f_1 + f_2)\eta_{v^{d'}} \sim f_1\eta_{v^{d'}} \) and \(\eta_{v^{d'}}(f_1 + f_2) \sim \eta_{v^{d'}}f_1 \).

Since \((|f_1|, v^d) = 1 \) there exists an integer \(\tilde{d} > d \) so that \(v^d \equiv 1(|f_1|) \). Consider the map \(\eta_{v^d}: S^{2m-1} \to S^{2m-1} \). This map is an \(l \)-equivalence; hence there exists an integer \(e \) so that \(1 = \eta_{v^d}\eta_{v^e}: |f_1|\pi_n S^{2m-1} \to |f_1|\pi_n S^{2m-1} \). Define \(t = (\tilde{d}) \).

Since \(f'\eta_{v^d} = (f_1 + f_2)\eta_{v^d} \sim f_1\eta_{v^d} \sim f_1 \sim \eta_vf_1 \sim \eta_v(f_1 + f_2) = \eta_vf' \),

\(t \) is the desired integer which completes the proof of 2.1.1.
Let \(h_i': S^n \to S^n \), \(k_i': S^{2m-1} \to S^{2m-1} \) be \(p_i \)-equivalences satisfying \(f_{p_i}(h_i')_{p_i} \sim (k_i')_{p_i} f'_{p_i} \). As \(k_i' f', h_i' \in \pi_n S^{2m-1} \) there exist integers \(u_i, (u_i, p_i) = 1 \), so that \(f_{p_i} h_i' \eta_{u_i} \sim k_i' f' \eta_{u_i} (\eta_{u_i}: S^n \to S^n) \). Consequently we obtain from 2.1.1 that there exist integers \(w_i \) satisfying

\[
fh_i' \eta_{w_i} \sim k_i' f' \eta_{w_i} \sim (k_i' \eta_{w_i}) f'.
\]

Suppose that \(\eta_{w_i} f' \sim k_i' f' \eta_{w_i}, \eta_{2_i} f' \sim f' \eta_{2_i} \) and \(p_i \neq 2 \) for \(i > 1 \). Define

\[
v = 2' \prod p_i, \\
h_i'' = \begin{cases} h_i' \eta_{u_i} \eta_{(2p_i)'}, & i = 1, \\
h_i' \eta_{w_i} \eta_{p_i}, & i \neq 1; \end{cases} \\
k_i'' = \begin{cases} k_i' \eta_{u_i} \eta_{(2p_i)'}, & i = 1, \\
k_i' \eta_{w_i} \eta_{p_i}, & i \neq 1; \end{cases} \\
h = \sum_i h_i'', \quad k = \sum_i k_i''.
\]

Obviously \(h \) and \(k \) are \(l \)-equivalences. In order to prove that \(fh \sim kf' \) it is enough to prove that \((\sum_i k_i' f') f' \sim (\sum(k_i'' f')) \).

Let \(i_j: S^{2m-1} \to S^{2m-1} \times (S^{2m-1})^{j-1} \) be the inclusion into the \(j \)th factor. There exists a map \(\alpha: S^{2m-1} \times (S^{2m-1})^{j-1} \to S^{2m-1} \) so that for every \(j > 1 \) the diagram

\[
\begin{array}{ccc}
S^{2m-1} & \xrightarrow{\eta_{2t}} & S^{2m-1} \\
\downarrow i_j & & \downarrow \alpha \\
(S^{2m-1})^{j-1} & \xrightarrow{\alpha} & S^{2m-1} \\
\downarrow i_1 & & \\
S^{2m-1} & & \\
\end{array}
\]

is commutative. Therefore the following diagram is commutative:

\[
\begin{array}{ccc}
\Delta^t & \xrightarrow{\Delta^t} & \Delta^t \\
\downarrow \Delta^t & & \downarrow \Delta^t \\
S^n \times (S^n)^{j-1} & \xrightarrow{\Delta^t} & S^n \times (S^n)^{j-1} \\
\downarrow U & & \downarrow U \\
S^{2m-1} \vee \cdots \vee S^{2m-1} & \xrightarrow{\Delta^t} & S^{2m-1} \vee \cdots \vee S^{2m-1} \\
\downarrow \Delta^t & & \downarrow \Delta^t \\
S^n \vee \cdots \vee S^n & & \\
\end{array}
\]

\[
(\Delta^t(x) = (x, \ldots, x)), \quad \text{namely } \sum_i (k_i'' f') = \alpha \circ (k_i'' f' \times \prod k_i'' f'/2t) \circ \Delta^t.
\]
Consequently the commutativity of the diagram

\[
\begin{array}{ccc}
S^n & \xrightarrow{\Delta^g} & S^n \times (S^n)^{s-1} \\
\downarrow f' & & \downarrow f' \times (f')^{s-1} \\
S^{2m-1} & \xrightarrow{k_1 f'' \times \prod_{i>1} k''_i 2^i} & S^{2m-1} \times (S^{2m-1})^{s-1} \\
\end{array}
\]

implied that \((\Sigma, k''_i f') \sim \Sigma (k'' f')\).

Since for any two maps \(g_1, g_2: S^n \to S^n, f(g_1 + g_2) \sim f g_1 + f g_2\), (2) follows from (1) in the same way that (2) of part (a) follows from (1) of the same part.

Notation. Let \(X\) be an \(H_0\)-space, denote by \(N(X)\) the least integer satisfying either, for every \(n > N(X)\), \(\pi_n X = 0\) or, for every \(n > N(X)\), \(H_n X = 0\). (Recall that we consider only spaces with \(N(X) < \infty\).)

2.3. Corollary. (a) Given an \(H\)-fibration \(F \to X \to Y\); if \(H^*(f, Q)\) is surjective then \(G_Y(f) = 0\).

(b) Given a fibration \(F \to X \to Y\) so that \(Y\) is an \(H\)-space and \(X\) is an \(H_0\)-space: If \(H^*(f, Q)\) is injective then \(G^X(f) = 0\).

(c) (a) and (b) hold also for a fibration of the form \(F \to SX \to Y\) where \(Y\) is an \(H\)-space.

Proof. (a) Let \(F \to X \to Y\) be an \(H\)-fibration and let \(l = \prod_{n<N}\text{torsion } \pi_n X \cdot \text{torsion } \pi_n F\) where \(N = \max\{N(X), N(Y)\}\). By Theorem 2.2 there exist \(l\)-equivalences \(h: X' \to X\) and \(h': F \to F\) so that the following diagram commutes

\[
\begin{array}{ccc}
F' & \xrightarrow{h'} & X' \\
\downarrow h' & & \downarrow h' \\
F & \xrightarrow{h} & X \\
\end{array}
\]

We shall prove that \(h\) is a homotopy equivalence.

As \(h_5: \pi_* X' \to \pi_* X\) and \(h_5': \pi_* F' \to \pi_* F\) \((\pi_* F = \text{torsion}(\pi_* X))\) are isomorphisms and as \(h, h'\) are \(0\)-equivalences, \(h_5: \pi_* X'/\text{torsion} \to \pi_* X/\text{torsion}\) and \(h'_5: \pi_* F'/\text{torsion} \to \pi_* F/\text{torsion}\) are monomorphisms, so are \(h_5: \pi_* X' \to \pi_* X\) and \(h'_5: \pi_* F' \to \pi_* F\) and \(h\) is a homotopy equivalence if and only if \(h_5\) is a surjection.

Consider the following diagram:

\[
\begin{array}{ccc}
\pi_n X' & \xrightarrow{f_5} & \pi_n Y \\
\downarrow h_5 & & \downarrow h' \\
\pi_n X & \xrightarrow{f_5} & \pi_n Y \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi_n X' & \xrightarrow{\delta} & \pi_n X \\
\downarrow h_5 & & \downarrow h_5 \\
\pi_n Y & \xrightarrow{\delta} & \pi_n X \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi_n X' & \xrightarrow{\delta} & \pi_n Y \\
\downarrow h' & & \downarrow h' \\
\pi_n X & \xrightarrow{\delta} & \pi_n Y \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi_n X' & \xrightarrow{\delta} & \pi_n Y \\
\downarrow h_5 & & \downarrow h_5 \\
\pi_n X & \xrightarrow{\delta} & \pi_n Y \\
\end{array}
\]
Let \(v \in \pi_n X \) be of infinite order. As \(H^*(f, Q) \) is surjective, \(H_*(f, Q) \) and \(\pi_*(f) \otimes Q \) are injective and so is \(\pi_*(f)/\text{torsion} \); hence \(w = f_\ast v \) is of infinite order as well.

\[0 = \partial w = h_\ast \partial v; \quad \text{hence } \partial'(w) = 0 \text{ and there exists } v' \in \pi_n X' \text{ so that } f_\ast v' = w. \]

Hence, \(v - h_\ast v' \in \ker f_\ast \subseteq \text{torsion } \pi_n X \subseteq h_\ast v \in \im h_\ast \) and \(h_\ast \) is surjective.

(b) and (c) are proved similarly.

3. The structure of \(G(f), \ G^X(f) \) and \(G_\ast(f) \).

In this section we use Zabrodsky's method of constructing the genus of an \(H_0 \)-space (with a finite number of homotopy or homology groups—Zabrodsky [8]) to obtain elements in the genus of a map \(f: X \to Y \) where \(X \) and \(Y \) are \(H_0 \)-spaces. We go on to prove that every element in the genus of a map which satisfies the conditions of Theorem I is obtained in this way. The same method is also good for constructing \(G^X(f) \), \((G_\ast(f)) \) for maps which satisfy the conditions of Theorem III (I).

3.1. Definitions and notations. Let \(P \) be the set of all primes. For any integer \(t \) denote by \(P_t \) the set of all primes which divide \(t \) and by \(t \) the set \(P - P_t \).

Let \(X \) be an \(H_0 \)-space, i.e. \(H^*(X, Q) \) is a free commutative graded algebra. Denote by \([X, X] \), the set of homotopy classes of \(t \)-equivalences \(f: X \to X \). Denote by \(t(X) \) the number \(\prod_{n < N(X)} [H^n(X)] \), by \(K(X) \) the space \(K(QH^*(X, Z)/\text{torsion}) \) and by \(l(x) \) the number of integers \(n \) for which \(QH^n(X, Q) \neq 0 \). Let \(\Gamma \) be a splitting \(\text{Hom}^\circ(QH^*(X, Z)/\text{torsion}, \ QH^*(X, Z)/\text{torsion}) \to [K(X), K(X)]: QH^*(\Gamma(f), Z)/\text{torsion} = f \).

Let \(A \) be an \(n \times n \) matrix. We shall say that \(A \) is diagonal if

\[
A_{ij} = \begin{cases}
\lambda_i, & i = j, i < \min(m, n), \\
0, & \text{otherwise}
\end{cases}
\]

(some of the \(\lambda_i \)'s may be zero).

Suppose \(f: X \to Y \) is a map and \(X \) and \(Y \) are \(H_0 \)-spaces. Let \(B_X = \{ x_{m_1}, x_{m_2}, \ldots, x_{m_\ell} \} \), \(\dim x_{m_i} = m_i \), \(m_i < m_{i+1} \) and \(B_Y = \{ y_{n_1}, y_{n_2}, \ldots, y_{n_\ell} \} \), \(\dim y_{n_i} = n_i < n_{i+1} \) be bases for \(QH^*(X, Z)/\text{torsion} \) and \(QH^*(Y, Z)/\text{torsion} \) in which \(QH^*(f, Z)/\text{torsion} \) is represented by a diagonal matrix \(A \).

Assume that \(QH^m(Y, Q) \neq 0 \) for \(j = 1, \ldots, l(X), m_1 < m_2 < \ldots < m_{l(X)} \), and that \(QH^k(Y, Q) \neq 0 \) for \(k = 1, \ldots, l(Y), n_1 < n_2 < \ldots < n_{l(Y)} \). Obviously for every \(1 < i < r \) there exists a \(j \) \((1 < j < l(X)) \) so that \(m_i = m_j \), and for every \(1 < i < s \) there exists a \(K \) \((1 < k < l(Y)) \) so that \(n_i = n_k \).

Let \(\tilde{t} = \prod_{n < N} [H^n(X, Z)] \) \((N = \max\{ N(X), N(Y) \}) \) and let \(\psi: X \to K(X), \varphi: Y \to K(Y) \) be rational equivalences realizing \(\{ x_{m_1}, \ldots, x_{m_\ell} \} \) and \(\{ y_{n_1}, \ldots, y_{n_\ell} \} \), respectively. Denote by \(t \) the least common multiple of \(\tilde{t}, \prod_{n < N} [H^n(Y, Z)], \prod_{n < N} [\pi_n(\text{fiber } \varphi)], \prod_{n < N} [\pi_n(\text{fiber } \psi)] \) and the nonzero elements of \(A \).

Denote by \(D \subset \Z^{(X)+l(Y)} \) the set of pairs \((d, d'), d = (d_{m_1}, \ldots, d_{m_{l(X)}}) \in \Z^{l(X)}, d' = (d'_{n_1}, \ldots, d'_{n_{l(Y)}}) \in \Z^{l(Y)} \) satisfying the following conditions:

(a) For every \(i_0 \), \(d_{m_i} = (d_{n_i}, t) = 1. \)
(b) If \(QH^m(f, Q) \) is a monomorphism and \(QH^m(Y, Q) \neq 0 \) then \(d'_{n_i} / d_{n_i} \).
(c) If \(QH^m(f, Q) \) is an epimorphism and \(QH^m(X, Q) \neq 0 \) then \(d_{m_i} / d'_{m_i} \).
(d) If \(QH^m(f, Q) \) is an isomorphism then \(d_{m_i} = d'_{n_i} \).
3.2. **Theorem (Zabrodsky [8])**. Let X be an H_0-space with $QH^m(X, Q) \neq 0$ for $i = 1, \ldots, l(X)$ and let $\psi: X \to K(X)$ be a rational equivalence. Suppose $t(X, \psi)$ is an integer divisible by $\prod_{n < i(X)}|\pi_n(\text{fiber } \psi)|$.

Then $G(X)$ admits an abelian group structure and there exists an exact sequence

$$[X, X]_{t(X, \psi)} \xrightarrow{\alpha} \left[(Z^*_t(X, \psi)) / \pm 1 \right]^{t(X)} \xrightarrow{\xi} G(X) \to 0$$

where α is the composition

$$[X, X]_{t(X, \psi)} \to \text{aut}(QH^*(X, Z)/\text{torsion} \otimes \mathbb{Z}) \xrightarrow{[\det]} \left[(Z^*_t(X, \psi)) / \pm 1 \right]^{t(X)}$$

and ξ is given as follows: Let $d_1, \ldots, d_{l(X)}$ be integers satisfying $(d_i, t(X, \psi)) = 1$ for every i and let $I_{d_1, \ldots, d_{l(X)}}: QH^*(X, Z)/\text{torsion} \to QH^*(X, Z)/\text{torsion}$ satisfy $\det(I_{d_1, \ldots, d_{l(X)}}QH^m(X, Z)/\text{torsion}) = d_i$. Consider the following pull-back diagram

If X has a finite number of homotopy groups define $\xi(d_1, \ldots, d_{l(X)}) = \tilde{X}$ and if X is finite dimensional define $\xi(d_1, \ldots, d_{l(X)}) = H\dim X(\tilde{X})$.

3.3. **Definition.** Let X be an H_0-space so that $QH^m(X, Q) \neq 0$ for $i = 1, \ldots, l(X)$ and let $f: X \to X$ be a map. Suppose $d = (d_1, \ldots, d_{l(X)})$. We say that f realizes d if, for every i, $\det(QH^m(f, Z)/\text{torsion}) = d_i$.

3.4. **Proposition.** Let $f: X \to Y$ be a map.

(a) If X, Y are H_0-spaces, then for every pair $(d, d') \in D$ there exist a map $f': X' \to Y'$, $G(f)$ and t-equivalences $h: X' \to X$ and $k: Y' \to Y$ so that f realizes d, k realizes d' and $fh = kf'$.

(b) Let f be an H-map and suppose $H^*(X, Q)$ and $H^*(Y, Q)$ are primitively generated. Then for every pair $(d, d') \in D$ there exist an H-map $f': X' \to Y'$ and H-maps h and k so that (a) is satisfied.

Proof. Let B_x, B_Y, φ and ψ be as in 3.1 and let $f: K(X) \to K(Y)$ satisfy $g\varphi \sim \varphi f$. Let $\alpha: K(X) \to K(X)$ and $\beta: K(Y) \to K(Y)$ satisfy:

$$\alpha = \prod \alpha_i (\alpha_i: K(Z, m_i) \to K(Z, m_i)),$$

$$\beta = \prod \beta_i (\beta_i: K(Z, n_i) \to K(Z, n_i)),$$

$$\det(QH^m(\alpha, Z)/\text{torsion}) = d_m,$$

$$\det(QH^m(\beta, Z)/\text{torsion}) = d_n.$$

Let $g\sim \beta g$ (such α and β exist since, for every i, $g^*(\tau_q) = \lambda_i\tau_q$ or $g^*(\tau_q) = 0$). Consider the diagram

![Diagram](image-url)
where X' is the pull-back of $X \xrightarrow{\psi} K(X) \xleftarrow{\alpha} K(X)$ and Y' is the pull-back of $Y \xrightarrow{\beta} K(Y) \xleftarrow{\delta} K(Y)$.

Since the lower trapezoid is a pull-back and $\psi h \sim \beta g \delta$, there exists a map $f': X' \to Y'$ so that $k f' \sim \delta$ and $\phi f' \sim \beta g$. Consider the diagram:

$$
\begin{array}{ccc}
X' & \xrightarrow{\theta_i} & K(X) \\
\downarrow f' & & \downarrow \delta_i \\
Y' & \xrightarrow{\varphi_i} & K(Y)
\end{array}
$$

(If $f: X \to Y$ is a homotopy equivalence f^{-1} denotes the homotopy inverse of f.)

Since this diagram is commutative and its horizontal rows are homotopy equivalences the map $f': X' \to Y'$ belongs to $G(f)$.

(b) Choose bases $\{x_{m_1}, \ldots, x_{m_p}\}$, $\{y_{m_1}, \ldots, y_{m_p}\}$ for $PH^*(X, Z)/\text{torsion}$ and $PH^*(Y, Z)/\text{torsion}$, respectively, in which $PH^*(f, Z)/\text{torsion}$ is represented by a diagonal matrix. (By Curjel [2] such bases exist.) Let $\psi: X \to K(X)$, $\varphi: Y \to K(Y)$ realize $\{tx_{m_1}, \ldots, tx_{m_p}\}$ and $\{ty_{m_1}, \ldots, ty_{m_p}\}$, respectively. Obviously ψ and φ are H-maps.

Let g, α and β be as in part (a). Consider diagram 3.4.1. Obviously h and k are H-maps and $f' \in G(f)$. We shall prove that f' is an H-map:

Since the maps

$$(\Omega \varphi)_*: [X^* \times X^*, \Omega K(Y)] \to [X^* \times X^*, \Omega K(Y)]$$

are τ and ι equivalences, respectively, the map

$$(\Omega \varphi)_* + (\Omega \beta)_*: [X^* \times X^*, \Omega K(Y)] \oplus [X^* \times X^*, \Omega Y] \to [X^* \times X^*, \Omega K(Y)]$$

is an epimorphism (Arkowitz [1, Proposition 4.3]). This together with the fact that $\phi f'$ and $k f'$ are H-maps implies (Arkowitz [1, Proposition 10.3]) that f' is an H-map.

3.5. COROLLARY. (a) If $(d, 1) \in D$ then Proposition 3.4 is true for $G_Y(f)$.

(b) If $(1, d') \in D$ then Proposition 3.4 is true for $G_X(f)$.

PROOF. (a) Choose $\phi = \varphi$, $k = 1$, $\beta = 1$.

(b) Choose $\theta = \psi$, $h = 1$, $\alpha = 1$.

3.6. PROPOSITION. Suppose X_1, X_2 are H-spaces so that $H^*(X_i, Q)$ ($i = 1, 2$) are primitively generated; Y_1, Y_2 are H_0-spaces; $f: X_1 \to X_2$ an H-map, and $g: Y_1 \to Y_2$ a map.

Let $B_{X_i} = \{x_{i_1}, \ldots, x_{i_m}\}$ be bases for $PH^*(X_i, Z)/\text{torsion}$, and let $B_{Y_i} = \{y_{i_1}, \ldots, y_{i_m}\}$ be bases for $H^*(Y_i, Z)/\text{torsion}$. Denote by A and B the matrices of $PH^*(f, Z)/\text{torsion}$ and $H^*(g, Z)/\text{torsion}$ in these bases.

There exists an integer $t(f, g)$ depending on X_i, Y_i, f and g so that: Given a pair of matrices (over Z) (C_1, C_2) satisfying $C_1 A = B C_2$, there exist functions $h_i: Y_i \to X_i$ ($i = 1, 2$) so that the following conditions are satisfied:
The matrix of $H^*(h, Z)/\text{torsion} | (PH^*(X, Z)/\text{torsion})$ relative to the bases B_X and B_Y, is \(t(f, g)C \).

(b) $f h_1 \sim h_2 g$.

Proof. It is enough to prove the proposition in case that B_X and B_Y are bases in which the matrices A and B are diagonal.

Let λ be the multiple of the nonzero elements of A and B. Let t be as in 3.1.

Let $C = \{(C_1, C_2) | |(C_1)_i| < \lambda, |(C_2)_j| < \lambda$ for every i and $j, C_1A = BC_2 \}$. To each pair $(C_1, C_2) \in C$ correspond functions $h_i : Y_i \to X_i$ the matrices of which relative to B_X and B_Y are $\lambda(C_i)$ (Zabrodsky [8, Proposition 1.8]). Since X_i and Y_i are i-equivalent to $K(X_i)$ and $K(Y_i)$, respectively, the i-localizations of fh_1 and $h_2 g$ coincide. Hence there exists an integer $s(C, C)$ so that $(\phi_{t(C_1, C)}h_2)g \sim f(\phi_{t(C_1, C)}h_1)$. This together with the finiteness of the set C implies the existence of an integer t which is good for every pair $(C_1, C_2) \in C$. We shall prove that $s = t(f, g)$.

As A and B are diagonal and $C_1A = BC_2$, for every i and j, $(C_1)_ia_j = b_2(C_2)_j$. If $b_2 = b \cdot b'$ where $b/(C_1)_j$ and b'/a_j then

\[
\left[(C_1)_j/b \right] \cdot ba_j = (C_1)_j a_j = b_2(C_2)_j = ba_j \left[(C_2)_j/(a_j/b') \right] .
\]

Assume that $|(C_1)_j/b| = l_j + c_j$ where $|c_j| < t$ or $c_j = 0$. For every $1 < k < \max(l_j) + 1$ define matrices C^k_1, C^k_2 as follows:

\[
(C^k_1)_j = \begin{cases} c_j b, & k = 1, \\ t b, & 1 < k < l_j + 1, \\ 0, & k > l_j + 1, \end{cases}
\]

\[
(C^k_2)_j = \begin{cases} c_j [a_j/b'], & k = 1, \\ t \cdot [a_j/b'], & 1 < k < l_j + 1, \\ 0, & k > l_j + 1. \end{cases}
\]

Obviously, for every k, the pair $(C^k_1, C^k_2) \in C$ and $(C_1, C_2) = \Sigma_k (C^k_1, C^k_2)$.

Let $h_1^k : Y_i \to X_i$ be maps the matrices of which are sC_1^k and which satisfy $fh_1^k \sim h_2^k g$. Since B_X are bases for $PH^*(X, Z)/\text{torsion}$ and f is an H-map, the matrices of $\Sigma_k h_1^k$ (relative to B_X and B_Y) are sC_i and $f(\Sigma_k h_1^k) \sim (\Sigma h_2^k)g$. Consequently $t(f, g) = s$.

3.7. REMARK. If $C_1A = BC_2$ and $C_1 = 0$ ($C_2 = 0$) we obtain that

\[
* \sim h_2 g(fh_1 \sim *).
\]

3.8. COROLLARY. Proposition 3.6 remains true if we substitute $X_1 = Y_1 = \sqrt{S^m}$, $f : X_1 \to X_2$ a function and replace B_X and B_Y, by bases B'_X and B'_Y of $H^*(\sqrt{S^m})$.

Proof. Analogous to the proof of Theorem 3.6, since if $k_1, k_2 : Y_1 \to X_1$ are functions the matrices of which (relative to the bases B_X and B_Y) are C_1 and C_2 and $l_1, l_2 : Y_2 \to X_2$ are functions which satisfy $f k_1 \sim l_1 g, f k_2 \sim l_2 g$. Then the matrix of $k_1 + k_2$ is $C_1 + C_2$ and $f(k_1 + k_2) \sim (l_1 + l_2)g$.

3.9. COROLLARY. If in Proposition 3.6 $Y_1 = X_2, B_{X_2} = B_{X_2}$ we obtain that there exists an integer $t(f, g)$ depending on X_1, Y_1, X_2, f and g, so that for every matrix C which satisfies $CA = B$, there exists a function $h : Y_1 \to X_1$ so that:

(a) The matrix of $H^*(h, Z)/\text{torsion} | (PH^*(X, Z)/\text{torsion})$ relative to the bases B_X and B_Y, is $t(f, g)C$.

(b) $fh \sim \phi_{t(f, g)} g$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. It is enough to prove the assertion in the case that \(B_x (i = 1, 2) \) are bases in which the matrix \(A \) of \(PH^*(f, Z)/\text{torsion} \) is diagonal.

Since \(CA = B \), the matrix \(C \) is of the form

\[
C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}
\]

where \(C_i \) is completely determined by \(A \) and \(B \). The corollary follows from the fact that every matrix \(D \) of the form

\[
D = \begin{pmatrix} 0 & C_2 \\ C_3 & C_4 \end{pmatrix}
\]

can be written as \(D = \sum_{k \text{ finite}} D_k \), where \(|(D_{kj})_i| < t \) for every \(i \) and \(j \) and \(D_k A = 0 \) for every \(k \).

3.10. Corollary. If in Proposition 3.6 \(Y_1 = X_1, B_{X_1} = B_{Y_1} = a \) basis for \(H^*(Y_1, Z)/\text{torsion} \), we obtain that there exists an integer \(t(f, g) \) so that for every matrix \(C \) which satisfies \(A = BC \) there exists a map \(k: Y_2 \to X_2 \) so that:

(a) The matrix of \(H^*(k, Z)/\text{torsion}(PH^*(X, Z)/\text{torsion}) \) relative to the bases \(B_{X_2} \) and \(B_{Y_2} \) is \(t(f, g)C \).

(b) \(kg \sim \phi_{t(f, g)}f \).

Proof. Similar to the proof of 3.9.

Remark. The corollary remains true if one replaces the conditions that \(X_1 \) is an \(H \)-space and \(f \) is an \(H \)-map by the conditions that \(X_1 \) is an \(H_0 \)-space and \(f \) is a map.

If \(A \) and \(B \) are matrices denote by \(A \bullet B \) the matrix \((a_{ij}^k)\).

If \(X, Y \) are \(H_0 \)-spaces and for every \(1 \leq i \leq l \) either \(H^i(X, Q) \neq 0 \) or \(H^i(Y, Q) \neq 0 \) we can identify

\[
\text{Hom}^{Q}(QH^*(Y, Z)/\text{torsion}, QH^*(X, Z)/\text{torsion}) \text{ with the set of matrices } A^Q = A_{s_1}^Q \bullet A_{s_2}^Q \bullet \cdots \bullet A_{s_l}^Q,
\]

\[
\text{Hom}^{D}(DH^*(Y, Z)/\text{torsion}, DH^*(X, Z)/\text{torsion}) \text{ with the set of matrices } A^D = A_{s_1}^D \bullet A_{s_2}^D \bullet \cdots \bullet A_{s_l}^D \text{ and}
\]

\[
\text{Hom}^{Q}_2(QH^*(Y, Z)/\text{torsion}, H^*(X, Z)/\text{torsion}) \text{ with the set of matrices } A = A_{s_1} \bullet A_{s_2} \bullet \cdots \bullet A_{s_l}
\]

where

\[
A_s = \begin{pmatrix} A_{s_1}^Q \\ A_{s_1}^D \end{pmatrix}
\]

and the order of the matrices \(A_{s}^Q, A_{s}^D \) is completely determined by

\[
H^*(X, Z)/\text{torsion} \text{ and } H^*(Y, Z)/\text{torsion}.
\]

We denote

\[
A = \begin{pmatrix} A_{s}^Q \\ A_{s}^D \end{pmatrix}
\]
3.11. Proposition. Suppose \(f: X \to Y \) is an \(H \)-map, \(H^{*}(X, \mathbb{Q}) \) and \(H^{*}(Y, \mathbb{Q}) \) are primitively generated and \(H^{*}(f, \mathbb{Q}) \) is either a monomorphism, an epimorphism, an isomorphism or zero.

Given a fibration \(F'' \rightarrow X'' \rightarrow Y'' \) in \(G(f) \) and a commutative diagram

\[
\begin{array}{ccc}
X'' & \xrightarrow{k''} & X \\
\downarrow f'' & & \downarrow f \\
Y'' & \xrightarrow{k'} & X
\end{array}
\]

(3.11.1)

where \(h'' \) and \(k'' \) realize \(\bar{d} = (\pm d_{m}, \ldots, \pm d_{n}) \) and \(\bar{d}' = (\pm d'_{m}, \ldots, \pm d'_{n}) \), respectively. Then the map \(f'': X'' \to Y'' \) is homotopy equivalent to the map \(f: X' \to Y' \), which corresponds to the pair \((d, d') \) \((d = (d_{m}, \ldots, d_{n}), \ d' = (d'_{m}, \ldots, d'_{n})) \) in the construction of Proposition 3.4.

Remarks. (1) The pair \((C_{1}, C_{2})\) which appears in Proposition 3.6 is equal to the matrix

\[
\begin{pmatrix}
C^{Q}_{1} & C^{Q}_{2} \\
C^{P}_{1} & C^{P}_{2}
\end{pmatrix}
\]

(2) When we write in the proof functions which correspond to the matrix

\[
\begin{pmatrix}
t_{1}C^{Q}_{1} & t_{2}C^{Q}_{2} \\
t_{3}C^{P}_{1} & t_{4}C^{P}_{2}
\end{pmatrix}
\]

where \(t(f', f'') / t_{i} \) for every \(i \), we mean functions \(h: X'' \to X' \), \(k: Y'' \to Y' \) so that the matrices of

\[
H^{*}(h, Z)/\text{torsion}|(PH^{*}(X', Z)/\text{torsion})
\]

and

\[
H^{*}(k, Z)/\text{torsion}|(PH^{*}(Y', Z)/\text{torsion})
\]

are

\[
\begin{pmatrix}
t_{1} & C^{Q}_{1} \\
t_{3} & C^{P}_{1}
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
t_{2} & C^{Q}_{2} \\
t_{4} & C^{P}_{2}
\end{pmatrix}
\]

respectively, and which satisfy \(f' h \sim k f'' \). (Such functions exist by Proposition 3.6.)

Proof of Proposition 3.11. We shall prove the proposition in the case \(\bar{d} = d \), \(\bar{d}' = d' \). The proof in the case \(\bar{d} = (\pm d_{m}, \ldots, \pm d_{n}) \neq d \) or \(\bar{d}' = (\pm d'_{m}, \ldots, \pm d'_{n}) \neq d' \) is similar.

By Zabrodsky [8] \(X'' \approx X' \), \(Y'' \approx Y' \) and \(F'' \approx F' \). After localization at \(t \) of diagram 3.11.1 and of the outer square of diagram 3.4.1 we obtain a commutative diagram:

\[X_{t}' \approx X''_{t} \quad h_{t}'' \quad X_{t} \]

\[Y_{t}' \approx Y''_{t} \quad k_{t}'' \quad Y_{t}\]
The fact that the left trapezoid is commutative and \(f' \) is an \(H \)-map imply (Theorem 2.2) the existence of an integer \(n_1, (n_1, t) = 1 \), and maps \(\tilde{h}: X'' \to X', \tilde{k}: Y'' \to Y' \) so that \(f' \tilde{h} \sim \tilde{k} f'' \), \(\tilde{h}_i \sim \phi_{n_1}^{-1} h_i'' \) and \(\tilde{k}_i \sim \phi_{n_1}^{-1} k_i'' \). As \(h \) and \(k \) are \(H \)-maps \((h \tilde{h})_i \sim \phi_{n_1} h_i'' \) and \((k \tilde{k})_i \sim \phi_{n_1} k_i'' \). Therefore there exists an integer \(n_2, (n_2, t) = 1 \), so that \(\phi_{n_2} (\phi_{n_1} h_i'') \sim \phi_{n_2} (h \tilde{h})_i \sim h(\phi_{n_1} \tilde{h}) \) and \(\phi_{n_2} (\phi_{n_1} k_i'') \sim \phi_{n_2} (k \tilde{k})_i \sim k(\phi_{n_1} \tilde{k}) \). The maps \(h' = \phi_{n_2} \tilde{h}, k' = \phi_{n_2} \tilde{k} \) satisfy \(\phi_{n_2} h'' \sim hh' \) and \(\phi_{n_2} k'' \sim kk' \) \((n = n_1n_2) \). Consequently the fact that \(h \) and \(h'' \) realize \(d \) and \(k \) and \(k'' \) realize \(d' \) imply that \(h' \) and \(k' \) realize the same as \(\phi_{n_2} \).

Let \(\chi: ZH^*(X'', Z) \to H^*(X'', Z) \) be a rational splitting, i.e. the map \(QH^*(X'', Z)/\text{torsion} \to H^*(X'', Z) \to QH^*(X'', Z)/\text{torsion} \) is a monomorphism of maximal rank. We shall identify \(QH^*(X'', Z)/\text{torsion} \) with \(X(\widetilde{QH^*(X'', Z)/\text{torsion}}) \).

Choose bases for \(PH^*(X', Z)/\text{torsion} \) and \(PH^*(Y', Z)/\text{torsion} \) in which \(PH^*(f', Z)/\text{torsion} \) is represented by a diagonal matrix \(M \), and bases for \(QH^*(X'', Z)/\text{torsion} \) and \(QH^*(Y, Z)/\text{torsion} \) in which \(QH^*(f'', Z)/\text{torsion} \) is represented by a diagonal matrix \(N^0 \). Denote by \(N \) the matrix of

\[
H^*(f'', Z)/\text{torsion}|QH^*(Y'', Z)/\text{torsion})
\]

relative to these bases. Obviously

\[
N = \begin{pmatrix}
N^0 \\
N^0 \times
\end{pmatrix}
\]

Let \(r \) be the number of generators of \(QH^*(X, Q) \) and let \(\bar{r} \) be the number of generators of \(QH^*(Y, Q) \). Define \(t' = \lambda^2 t(f', f'') \) where \(\lambda \) is the multiple of the nonzero elements of \(M \) and \(N \). Consider the matrices \(A^Q \) and \(\tilde{A}^Q \) of \(QH^*(h', Z)/\text{torsion} \) and \(QH^*(h'', Z)/\text{torsion} \), respectively. Since \(h' \) and \(k' \) realize the same as \(\phi_n \) and \((n, t') = 1 \), the matrices \((nI)^{-1} \cdot (A^Q \otimes Z_r) \) and \((nI)^{-1} \cdot (\tilde{A}^Q \otimes Z_r) \) belong to \(\text{SL}(r, Z_r) \) and \(\text{SL}(\bar{r}, Z_r) \), respectively. As for every \(n \) there exists an epimorphism \(\beta_n: \text{SL}(m, Z) \to \text{SL}(n, Z) \) when \(n \geq m \), there exist matrices \(E \in \text{SL}(r, Z), \tilde{E} \in \text{SL}(\bar{r}, Z) \) so that \(\beta_n(E) = (nI)^{-1} \cdot (A^Q \otimes Z_r) \) and \(\beta_n(\tilde{E}) = (nI)^{-1} \cdot (\tilde{A}^Q \otimes Z_r) \). Consequently there exist matrices \(B \) and \(\tilde{B} \) (over \(Z \)) so that \(A^Q = nE + t'B \) and \(\tilde{A}^Q = n\tilde{E} + t'\tilde{B} \).

We shall use the conditions on \(A^Q, \tilde{A}^Q \) and \(H^*(f, Q) \) to construct homotopy equivalences \(\tilde{h}: X'' \to X' \) and \(\tilde{k}: Y'' \to Y' \) so that \(f' \tilde{h} \sim \tilde{k} f'' \). We shall discuss separately each condition on \(H^*(f, Q) \).

(a) \(H^*(f, Q) = 0 \).

Let \(h_1: X'' \to X', k_1: Y'' \to Y' \) be functions which correspond to the matrix \((-r^B \quad -r^B) \) and let \(h_2: X'' \to X', k_2: Y'' \to Y' \) be functions which correspond to the matrix \((-r^B \quad -r^B) \). Define maps \(\tilde{h}: X'' \to X', \tilde{k}: Y'' \to Y' \) by \(\tilde{h} = a(h' + h_1) + bh_2, \tilde{k} = a(k' + k_1) + bk_2 \), where \(a \) and \(b \) are integers satisfying \(an + bt' = 1 \). Since the matrices of \(QH^*(\tilde{h}, Z)/\text{torsion} \) and \(QH^*(\tilde{k}, Z)/\text{torsion} \) are \(E \) and \(\tilde{E} \), respectively, \(\tilde{h} \) and \(\tilde{k} \) are homotopy equivalences. Obviously \(f' \tilde{h} \sim \tilde{k} f'' \) (\(f' \) is an \(H \)-map); hence \(\tilde{h} \) and \(\tilde{k} \) are the desired maps.

(b) \(H^*(f, Q) \) is a monomorphism.
Assume that A^Q_i is a $v_i \times v_i$ matrix and that \tilde{A}^Q_i is a $w_i \times w_i$ matrix. Assume also that for every i

\[
M_i = \begin{pmatrix} m_{1,v_i} & \cdots & m_{v_i,v_i} \\
0 & \cdots & 0 \end{pmatrix} v_i - w_i
d\quad N_i^Q = \begin{pmatrix} n_{1,w_i} & \cdots & n_{w_i,w_i} \\
0 & \cdots & 0 \end{pmatrix} v_i - w_i.
\]

As $A^Q M = N^Q \tilde{A}^Q$ and $(\det \tilde{A}^Q, \lambda) = 1$, for every i the matrix A^Q_i is of the form

\[
A^Q_i = \begin{pmatrix} w_i \times w_i & C_i \\
0 & \tilde{C}_i \end{pmatrix} (v_i - w_i) \times (v_i - w_i)
\]

where $(\det C_i) = n^w$ and $(\det \tilde{C}_i) = n^{w - w_i}$. Define

\[
M'_i = \begin{pmatrix} \lambda/m_{1,v_i} & 0 \\
0 & \cdots & 0 \\
0 & \lambda/m_{w_i,w_i} \end{pmatrix} w_i \times w_i \times (v_i - w_i),
\]

$M' = M'_1 \ast M'_2 \ast \cdots \ast M'_n$ and $B = \lambda N \tilde{B} M'$. As B satisfies

\[
t(f', f'')BM = \lambda(f', f'')N \tilde{B} M' M = \lambda^2(f', f'')N \tilde{B}(\lambda I) = \lambda^2 t(f', f'')N \tilde{B} = t' \tilde{B},
\]

there exist maps $h_1: X'' \to X'$, $k_1: Y'' \to Y'$ which correspond to the matrix

\[
\begin{pmatrix} -t(f', f'') \tilde{B} & 0 \\
0 & -t'(f', f'') \tilde{B} \end{pmatrix}
\]

Define $h_2 = h' + h_1$, $k_2 = k' + k_1$. As f' is an H-map, $f'h_2 \sim k_2 f''$. From this homotopy and from the definition of h_2 and k_2 it follows that the matrices of $QH^*(h_2, Z)/\text{torsion}$ and $QH^*(k_2, Z)/\text{torsion}$ are $A' = A^Q - t(f', f'') \tilde{B}$ and $n E$, respectively, and that $A'M = nN \tilde{Q} E$. The last equality together with the facts that $(n, \lambda) = 1$ and $(\tilde{B}^Q)_{kj} = 0$ for every k and j that satisfy either $k > w_i$ or $j > w_i$, imply that for every i the matrix A'_i is of the form

\[
A'_i = \begin{pmatrix} w_i \times w_i \\
0 & \cdots & 0 \\
0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} n E'_i \\
0 \\
0 \end{pmatrix} + t' B'_i \times (v_i - w_i) \times (v_i - w_i)
\]

where $E'_i \in \text{GL}(v_i - w_i, Z)$, $E''_i \in \text{GL}(w_i, Z)$ and $n E' + t' B' = \tilde{C}_i$.

For every i denote by D_i the matrix

\[
D_i = \begin{pmatrix} w_i \times w_i \\
0 & \cdots & 0 \\
0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} t'D'_i \\
0 \\
0 \end{pmatrix} (v_i - w_i) \times (v_i - w_i)
\]

where $(A'_i)_{kj} + t'(D'_i)_{kj} \equiv 0 \pmod{n}$ for every k and j that satisfy either $k < w_i$ or $j > w_i$. Define $D = D_1 \ast D_2 \ast \cdots \ast D_n$. Since $DM = 0$ there exists a function $h_3: X'' \to X'$ so that $f'h_3 \sim \ast$.

Define functions $h_4: X'' \to X'$, $k_4: Y'' \to Y'$ by $h_4 = h_2 + h_3$, $k_4 = k_2$. It is clear that $f'h_4 \sim k_4 f''$, that the matrix of $QH^*(k_4, Z)/\text{torsion}$ is $n E$, that there exists a
matrix \(\tilde{E} \in \text{GL}(r, Z) \) so that the matrix of \(QH^*(h_4, Z)/\text{torsion} \) is \(n\tilde{E} \) and that \(\tilde{E}M = N^Q\tilde{E} \).

Let \(h_5: X'' \to X', k_5: Y'' \to Y' \) be functions which correspond to the matrix

\[
\begin{bmatrix}
t'\tilde{E} & t'\tilde{E} \\
t(f', f'')\tilde{E} & 0
\end{bmatrix}
\]

where \(\tilde{E} = \lambda N^P\tilde{E}' \) (such functions exist since \(t'N^Q\tilde{E} = t'\tilde{E}M \) and \(t'N^P\tilde{E} = t(f', f'')\tilde{E}M \)). Define \(\bar{h} = ah_4 + bh_5, \bar{k} = ak_4 + bk_5 \), where \(a \) and \(b \) are integers satisfying \(an + bt' = 1 \). As the matrices of \(\bar{h} \) and \(\bar{k} \) are \(\tilde{E} \) and \(\tilde{E} \), respectively, and as \(f' \) is an \(H \)-map, \(\bar{h} \) and \(\bar{k} \) are homotopy equivalences and \(f'\bar{h} \sim \bar{k}'f'' \).

(c) \(H^*(f, Q) \) is an epimorphism.

Assume that \(A^Q_x \) is a \(v_i \times v_i \) matrix, that \(\tilde{A}^Q_x \) is a \(w_i \times w_i \) matrix and for every \(i \)

\[
N_x = \begin{bmatrix}
n_{1,1} & \cdots & n_{1,v_i} \\
\vdots & & \vdots \\
n_{v_i,1} & \cdots & n_{v_i,v_i}
\end{bmatrix}
\]

\[
M_x = \begin{bmatrix}
m_{1,1} & \cdots & m_{1,v_i} \\
\vdots & & \vdots \\
m_{v_i,1} & \cdots & m_{v_i,v_i}
\end{bmatrix}
\]

and

\[
\tilde{N}_x = \begin{bmatrix}
\lambda/n_{1,1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda/n_{v_i,v_i}
\end{bmatrix}
\]

\[
\tilde{M}_x = \begin{bmatrix}
\lambda/n_{1,1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda/n_{v_i,v_i}
\end{bmatrix}
\]

\[
N' = N'_x \ast N'_y \ast \cdots \ast N'_z \text{ and } B' = N'B\tilde{M}.
\]

Let \(\bar{N} \) and \(\tilde{N} \) be the matrices of \(DH^*(f'', Z)/\text{torsion} \) and \(H^*(f'', Z)/\text{torsion} \), respectively. As for every decomposable element \(d \in H^*(X'', Z)/\text{torsion} \) there exists a decomposable element \(d' \in H^*(Y'', Z) \) satisfying \((f'') \ast d' = \lambda d \), there exists a matrix \(B'' \) so that \(-\lambda N^P B'' = \bar{N}B''\). Define \(\bar{B} = (\lambda B, \bar{B} = (\lambda 0)\).

As \(B' \) satisfies

\[
\lambda t(f', f'')N^QB' = \lambda t(f', f'')(\lambda B)BM = \lambda^2 t(f', f'')BM = t'BM,
\]
\overline{B} and \overline{B} satisfy $t(f', f'')N\overline{B} = t'\overline{B}M$. Consequently there exist functions $h_1: X'' \to X'$, $k_1: Y'' \to Y'$ which correspond to the matrix

$$
\begin{pmatrix}
-t'B & -t(f', f'')B' \\
0 & -t(f', f'')B''
\end{pmatrix}
$$

Define $h_2 = h' + h_1$, $k_2 = k' + k_1$. The matrices of $\text{QH}^*(h_2, Z)/\text{torsion}$ and $\text{QH}^*(k_2, Z)/\text{torsion}$ are nE and $A' = \tilde{A}' = t'E - t(f', f'')E$. As $f'h_2 \sim k_2f''$, E and A' satisfy $nEM = N\tilde{Q}'A'$. This together with the fact that $(n, \lambda) = 1$ and $(B_j)_k = 0$ for every pair (k,j) satisfying either $k > v_j$ or $j > v_i$, imply that for every i the matrix A_i' is of the form

$$
\begin{pmatrix}
0 & 0 \\
0 & -t'NDE
\end{pmatrix}
$$

where $E_i \in \text{GL}(w_i - v_i, Z)$, $E_i'' \in \text{GL}(v_i, Z)$ and $nE_i' + t'B_i' = \tilde{C}_i$.

For every i denote by D_i the matrix

$$
\begin{pmatrix}
0 & 0 \\
0 & -t'D_i
\end{pmatrix}
$$

where $(A_i')_i + t'(D_i)_i \equiv 0 \pmod{n}$ for every i and j satisfying either $i > v_j$ or $j < v_i$. Define $D = D_1 \cdot D_2 \cdot \cdots \cdot D_i$. Since, for every i and j, D_j is divisible by λ, there exists a matrix \overline{D} so that $-N\overline{D} = \overline{D}$. Denote $D' = \left(\frac{D}{2}\right)$. D' satisfies $\overline{N}D' = 0$; therefore there exists a function $k_3: Y'' \to Y'$ so that $k_3f''' \sim \cdots$.

Define $h_4: X'' \to X'$, and $k_4: Y'' \to Y'$ by $h_4 = h_2$, $k_4 = k_2 + k_3$. It is obvious that $f'h_4 \sim k_4f''$, that the matrix of $\text{QH}^*(h_4, Z)/\text{torsion}$ is nE, that there exists a matrix \overline{E} so that the matrix of $\text{QH}^*(k_4, Z)/\text{torsion}$ is $n\overline{E}$ and that $EM = N\overline{Q}E$.

Let $h_5: X'' \to X'$, $k_5: Y'' \to Y'$ be functions which correspond to the matrix

$$
\begin{pmatrix}
t'E & t'\overline{E} \\
0 & t(f', f'')\overline{E}
\end{pmatrix}
$$

where the matrix \overline{E} satisfies $-t'N\overline{E} = t(f', f'')\overline{E}$. Define $\tilde{h} = ah_4 + bh_5$, $\tilde{k} = ak_4 + bk_5$ where a and b are integers which satisfy $an + bt' = 1$. As the matrices of $\text{QH}^*(\tilde{h}, Z)/\text{torsion}$ and $\text{QH}^*(\tilde{k}, Z)/\text{torsion}$ are E and \overline{E}, respectively, \tilde{h} and \tilde{k} are homotopy equivalences. Obviously $f'\tilde{h} \sim \tilde{k}f''$; hence \tilde{h} and \tilde{k} are the desired maps.

3.12. COROLLARY. Proposition 3.11 is also true for a map $S^{2n-1} \to X$ where X is an H-space so that $H^*(X, Q)$ is primitively generated.

PROOF. The assertion follows from Corollary 3.8 in the same way that Proposition 3.11 follows from Proposition 3.6.

3.13. COROLLARY. Let $f: X \to Y$ be a map which satisfies conditions (a) or (b) of Theorem 1. Given a map $f'': X'' \to Y$ in $G_\gamma(f)$ and a t-equivalence $h'': X'' \to X'$ realizing $\tilde{d} = (\pm d_{m_1}, \ldots, \pm d_{m_{N_1}})$. Then the map $f'': X'' \to Y$ is homotopy equivalent to the map $f'': X' \to Y$ which corresponds to the pair $(d, 1)$ $(d = (d_{m_1}, \ldots, d_{m_{N_1}}))$ by the construction of Proposition 3.4.
Proof. The corollary is obviously true if \(f \) satisfies condition (b), namely if \(X = S^{2n-1} \).

Suppose \(f \) satisfies condition (a). By Corollary 2.3, \(G_x(f) = 0 \) if \(H^*(f, Q) \) is either an isomorphism or an epimorphism. Therefore we have only to check the cases \(H^*(f, Q) = 0 \) and \(H^*(f, Q) \) is a monomorphism.

Choose bases for \(PH^*(X', Z)/\text{torsion} \) and \(PH^*(Y', Z)/\text{torsion} \) in which the matrix \(A \) of \(PH^*(f', Z)/\text{torsion} \) is diagonal. Define \(t' = \lambda t(f', f'') \), where \(\lambda \) is the multiple of the nonzero elements of \(A \). Assume \(\tilde{d} = d \). Using the considerations of Proposition 3.11 one obtains that there exists a map \(h': X'' \to X' \) which realizes the same as \(\phi_n \) and satisfies \(f'h' \sim \phi_nf'' \), and that the map \(f'': X'' \to Y \) is homotopy equivalent (over \(Y \)) to the map \(f': X' \to Y \).

(If \(\tilde{d} = (\pm d_n, \ldots, \pm d_{n_X}) \neq d \) the proof is similar.)

3.14. Corollary. Let \(f: X \to Y \) be a map which satisfies the conditions of Theorem III. Given a map \(f'': X \to Y'' \) in \(G_x(f) \) and a \(t \)-equivalence \(k'': Y'' \to Y \) realizing \(\tilde{d}' = (\pm d_n, \ldots, \pm d_{n_X}) \). Then the map \(f'': X \to Y'' \) is homotopy equivalent (under \(X \)) to the map \(f': X' \to Y' \) which corresponds to the pair \((1, d') (d' = (d_n', \ldots, d_{n_X}) \) by the construction of Proposition 3.4.

Proof. If \(H^*(f, Q) \) is either a monomorphism or an isomorphism then \(G_x(f) = 0 \) by Corollary 2.3. If \(H^*(f, Q) \) is either an epimorphism or zero, one chooses bases for \(QH^*(X'', Z)/\text{torsion} \) and \(QH^*(Y'', Z)/\text{torsion} \) in which the matrix \(B \) of \(QH^*(f'', Z)/\text{torsion} \) is diagonal, then one defines \(t' = \lambda t(f', f'') \) where \(\lambda \) is the multiple of the nonzero elements of \(B \). Using the Corollary 3.14 follows from Corollary 3.10 in the same way that Proposition 3.11 follows from Proposition 3.6.

In Theorems I, II and III we referred to an integer \(\hat{t} \). We shall define it now:

3.15. Definition. (a) If \(f: X \to Y \) is a map satisfying the conditions of Theorems I or III and \(Y \not\equiv S^{2n-1} \), we define \(\hat{t} = \hat{t}(f, f) \) (of 3.6).

(b) If \(X = S^{2n-1} \), \(Y = S^{2m-1} \) \((n > m)\) and the order of \(f \) is odd we define \(\hat{t} = \text{order}(f) \).

(c) If \(X = S^{2n-1} \), \(Y = S^{2m-1} \) \((n > m)\) and the order of \(f \) is even, we define \(\hat{t} = |f|^e \), where \(e \) is an integer satisfying \(\eta[f]f \sim * \).

(By the proof of Theorem 2.2 such an integer exists.)

3.16. Proposition. (a) Let \(f: X \to Y \) be a map which satisfies the conditions of Theorem I. There exists a surjection \(\xi: \mathcal{D} \to G(f) \) satisfying the following conditions:

1. \(\xi(d, d') = \xi(d + \hat{t}s, d' + \hat{t}s') \) whenever \((d, d') \) and \((d + \hat{t}s, d' + \hat{t}s') \) belong to \(\mathcal{D} \).

2. If \(f \) is an H-map, then for every pair \((d, d') \in \mathcal{D}, \xi(d, d') \) is an H-map.

3. If \(D' = \{(d, 1) \in \mathcal{D} \} \) then \(\xi|D' \) is on \(G_y(f) \) and for any two pairs \((d, 1), (d + \hat{t}s, 1) \) in \(D', \xi(d, 1) = \xi(d + \hat{t}s, 1) \) in \(G_y(f) \).

(b) If the map \(f: X \to Y \) satisfies the conditions of Theorem III and if \(D'' = \{(1, d') \in \mathcal{D} \} \) then the map \(\xi|D'' \) (\(\xi \) from (a)) is on \(G_x(f) \) and

\[\xi(1, d') = \xi(1, d' + \hat{t}s') \]

in \(G_x(f) \), whenever \((1, d') \) and \((1, d' + \hat{t}s') \) belong to \(D'' \).
PROOF. Propositions 3.4 and 3.11 imply that there exists a surjection \(\xi': D \to G(f) \), that \(\xi'|D' \) and \(\xi'|D'' \) on \(G_Y(f) \) and on \(G^X(f) \), respectively, and that if \(f \) is an \(H \)-map, then \(\xi(d, d') \) is an \(H \)-map for every pair \((d, d') \in D \).

We shall prove part (a)(1) (parts (a)(3) and (b) are proved similarly). We shall distinguish two cases:

(a) \(f \) satisfies conditions (a) or (b) of Theorem I.

(b) \(f: S^{2n-1} \to S^{2m-1} \) \((n > m)\).

The proof of case (a). It follows from Propositions 3.4 and 3.11 that for every pair \((1 + ts', 1 + ts') \in D \), \(\xi(1 + ts', 1 + ts') = \xi(1, 1) = (f: X \to Y) \).

Let \((d_1', d_2') \in D \) be a pair which satisfies \((d_1, d_2, d_1', d_2') = (1 + ta, 1 + ta') \) where \((a, a') \in Z^k(Z) \times Z^k(Y) \). Assume that \(\xi(d, d') = (f': X' \to Y') \) and that

\[
\xi(d + ts, d' + ts') = (f'': X'' \to Y'').
\]

Since \((d_1(d + ts), d_1'(d + ts')) = (1 + \hat{t}(a + d_1s), 1 + \hat{t}(a' + d_1's')) \), it follows from Proposition 3.4 that \(\xi(d, d') = \xi(d_1, d_1') = f \). Consequently there exists a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{h_2} & X'' \\
| & & | \\
h_1 & \downarrow f & \downarrow f'' \\
| & & | \\
X' & \xrightarrow{f'} & Y' \\
| & \downarrow k_1 & \downarrow k_2 \\
Y & \rightarrow & Y''
\end{array}
\]

where \(h_1 \) and \(h_2 \) realize \(d_1 \), and \(k_1 \) and \(k_2 \) realize \(d_1' \). Using this diagram we obtain (in the same way that we proved Proposition 3.11) that

\[
\xi(d, d') = \xi(d + ts, d' + ts').
\]

The proof of (b). Assume that \(\xi(d, d') = (f': S^{2n-1} \to S^{2m-1}) \) and that \(\xi(d + ts, d' + ts') = (f'': S^{2n-1} \to S^{2m-1}) \). As for every \(f' \in G(f) \) the order of \(f' \) is equal to the order of \(f \), we obtain from the choice of \(\hat{t} \) that \(\eta_{d + ts} f' \sim \eta_{d + ts} \); hence \(\xi(d, d') = \xi(d + ts, d' + ts') \).

3.17. The proof of Theorems I, II, and III. We shall prove Theorem I. Theorems II and III are proved similarly.

Let \(\beta: D \to [(Z^k)^*]/\pm 1^{(X) + (Y)} \) be the map

\[
\beta(d_{m_1}, \ldots, d_{m_k}, d_{n_1}, \ldots, d_{n_k}) = (d_{m_1} \mod \hat{t}, \ldots, d_{m_k} \mod \hat{t}, d_{n_1} \mod \hat{t}, \ldots, d_{n_k} \mod \hat{t}).
\]
By Proposition 3.16, $\xi': D \to G(f)$ factors through $\text{Im} \beta$. We shall calculate $\text{Im} \beta$.

To this end we shall distinguish among four cases:

1. $H^*(f, Q) = 0$. If $(d, d') \in D$ there is no relation between d and d'; consequently $\text{Im} \beta = [(Z_f^* / \pm 1)^{l(X)} + (Y)]).

2. $H^*(f, Q)$ is an isomorphism. $(d, d') \in D$ iff $d = d'$; consequently

$$\text{Im} \beta = \{(d, d) \in [(Z_f^* / \pm 1)^{l(X)} + (Y)] \}.$$

3. $H^*(f, Q)$ is a monomorphism. Suppose $d = (d_m, \ldots, d_m^{n_y}) \in [(Z_f^* / \pm 1)^{l(X)}$ and $d' = (d'_m, \ldots, d'_m^{n_y}) \in [(Z_f^* / \pm 1)^{l(Y)}$. Define $\tilde{d} = (\tilde{d}_m, \ldots, \tilde{d}_m^{n_y}) \in Z^{l(Y)}$ by

$$\tilde{d}_m = \begin{cases} d_m, & m_i \neq n_j \text{ for every } j, \\
_j, & m_i = n_j,
\end{cases}$$

where $0 < c_1 \leq \hat{r}$ is an integer satisfying $d_m \equiv c d_m^j (\text{mod } \hat{t})$. Obviously $(\tilde{d}, d') \in D$ and $\beta(\tilde{d}, d') = (d, d')$. Consequently $\text{Im} \beta = [(Z_f^*/ \pm 1)^{l(X)} / (Y)].$

4. $H^*(f, Q)$ is an epimorphism. Suppose d and d' are as in (3). Define $\tilde{d} = (\tilde{d}_m, \ldots, \tilde{d}_m^{n_y}) \in Z^{l(Y)}$ by

$$\tilde{d}_m = \begin{cases} d_m', & n_i \neq m_j \text{ for every } j, \\
c_i d_m, & n_i = m_j,
\end{cases}$$

where $0 < c_1 \leq \hat{r}$ is an integer satisfying $d_m' \equiv c_i d_m (\text{mod } \hat{t})$. Obviously $(d, \tilde{d}) \in D$ and $\beta(d, \tilde{d}) = (d, d')$. Consequently $\text{Im} \beta = [(Z_f^*/ \pm 1)^{l(X)} + (Y)].$

Define an integer k as follows: If $H^*(f, Q)$ is either a monomorphism, an epimorphism or zero put $k = l(X) + l(Y)$ and if $H^*(f, Q)$ is an isomorphism put $k = l(X) = l(Y)$. By Proposition 3.16 and the calculation of $\text{Im} \beta$, the surjection $\xi': D \to G(f)$ induces a surjection $\xi': [(Z_f^*)/ \pm 1]^k \to G(f)$. Define an action on $G(f)$ by $\xi'(d, (d')) \cdot \xi'(d, (d')) = \xi'(dd, (d'd'))$. Propositions 3.4, 3.11 and 3.16 imply that the action is well defined, that $G(f)$ with this action is an abelian group and that the sequence

$$[(Z_f^*)/ \pm 1]^k \to G(f) \to 0$$

is exact.

4. Some consequences of Theorems I, II, and III. We assume that all the maps satisfy the conditions of Theorem I or of Theorem III (Theorem I when we speak of $G(f)$ or $G_Y(f)$, Theorem III when we speak of $G_X(f)$).

4.1. Lemma. Let $f: S^{2n-1} \to S^{2m-1}$ be a map. If the order of f is odd then $G(f) = G_{S^{2n-1}}(f) = [(Z_f^*)/ \pm 1]$.\]

Proof. $(d, d') \in \text{Im} \alpha' \subset [(Z_f^*)/ \pm 1]^2$ if and only if if $d \equiv d' (\text{mod } |f|)$.

Remark. It is clear that for any map of the form $f: S^n \to S^n$, $G(f) = 0$.

4.2. Lemma. If $f: X \to Y$ is a map and f is a rational equivalence then each map f':

$X' \to Y'$ in $G(f)$ is obtained as the pull-back of $X \to Y \leftarrow Y'$ where k is a \hat{t}-equivalence. In particular for every $f' \in G(f)$, $F' \approx F$.\]
Proof. Follows from the construction that appears in Proposition 3.4.

4.3. Lemma. Let \(f_1 : X_1 \rightarrow Y_1 \) and \(f_2 : X_2 \rightarrow Y_2 \) be maps.

(a) Each map in \(G(f_1 \times f_2) \) is of the form \(g_1 \times g_2 \) where \(g_i \in G(f_i) \).

(b) If \((1) \ QH^n(X_1, Q) \neq 0 \) whenever \(QH^n(X_2, Q) \neq 0 \),

then

\[
\begin{align*}
(1') & \ G(f_1 \times f_2) = f_1 \times G(f_2), \\
(2') & \ G^X(f_1 \times f_2) = f_1 \times G^X(f_2), \\
(3') & \ G_Y(f_1 \times f_2) = f_1 \times G_Y(f_2), \\
(4') & \ G^Y(f_1 \times f_2) = f_1 \times G^Y(f_2).
\end{align*}
\]

4.4. Corollary. Let \(f : X \rightarrow Y \) be a map. There exists an integer \(n \) so that \(G(f^n) = 0 \).

Proof. If \(f' \in G(f) \) and \(f' = \hat{\xi}(d, d') \) then \((f')^n \in G(f^n) \) satisfies \((f')^n = \hat{\xi}(d'n, d'n) \). Consequently \((f')^n(f^n)/2 = f^n(f^n)/2 \). \(\varphi(i) \) is the Euler number of \(i = \) the order of \(Z^* \).

Remark. It is obvious that the corollary is also true for \(G^X(f) \) and \(G_Y(f) \).

4.5. Lemma. Every map in \(G(\text{proj}: X \times Y \rightarrow Y) \) is of the form \(\text{proj}: X \times Y \rightarrow Y' \) where \(X' \subseteq G(X) \) and \(Y' \subseteq G(Y) \).

4.6. Lemma. Let \(f : X \rightarrow Y \) be a map \((Y \neq S^{2m-1}) \).

(a) Every map in \(G(\phi_n f) \) is of the form \(\phi_n f' \) where \(f' \in G(f) \).

(b) If \(X \) is an H-space then every map in \(G(\phi_n f) \) is of the form \(f' \phi_n \) where \(f' \in G(f) \).

(c) If \(X = S^{2n-1} \) then every map in \(G(\phi_n f) \) is of the form \(f' \eta_n \) where \(f' \in G(f) \).

Proof. We shall prove (a). The proofs of (b) and (c) are similar.

Since \(f^n \) and \((\phi_n f)^n \) can be diagonalized simultaneously we can apply diagram 3.4.1 (with the same \(\varphi \) and \(\psi \)) to construct \(G(f) \) and \(G(\phi_n f) \). Suppose \(\xi(d, d') = (X' \rightarrow Y') \) and \(\xi_{\phi_n f} = (g' : X' \rightarrow Y') \). From diagram 3.4.1 we obtain that there exist an H-map \(k : Y' \rightarrow Y \) and a map \(h : X' \rightarrow X \) (obviously if \(f \) is an H-map \(h \) is, also, an H-map) which realize \(d' \) and \(d \), respectively, and which satisfy \(k g \sim (\phi_n f) h \) and \(k f \sim h f \). The last homotopy together with the fact that \(k \) is an H-map imply that \(k(\phi_n f') \sim (\phi_n f) h \). Therefore by Proposition 3.11 the map \(\phi_n f' \) is homotopy equivalent to \(g \).

5. The map \(G(X, Y, f) \rightarrow G(X) \times G(Y) \). The map \(G(X, Y, f) \rightarrow G(X) \times G(Y) \) exists for every map \(f : X \rightarrow Y \). An immediate consequence of Theorem I is that for maps \(f : X \rightarrow Y \) which satisfy the conditions of Theorem I the above map is a homomorphism and the compositions \(G(X, Y, f) \rightarrow G(X) \times G(Y) \rightarrow G(X) \) and \(G(X, Y, f) \rightarrow G(X) \times G(Y) \rightarrow G(Y) \) are epimorphisms.
In this section we deal with the kernel of the map $G(X, Y, f) \to G(X) \times G(Y)$ only for maps $f: X \to Y$ which satisfy the conditions of Theorem I. In case that this map is a monomorphism and $G(Y) = 0$ ($G(X) = 0$) we conclude (by the previous paragraph) that $G(X, Y, f) \cong G(X)$ ($G(X, Y, f) \cong G(Y)$).

All the notations in the next lemma, except the addition of indices to indicate the dependence in d and d', are taken from diagram 3.4.1.

5.1. Lemma. Let X and Y be H_0-spaces so that $H^*(X, Z)$ and $\pi_\infty Y$ are torsion free. If $f: X \to Y$ is a map which satisfies the conditions of Theorem I then

$$| \ker(G(X, Y, f) \to G(X) \times G(Y)) | = \left| \{ \{ \gamma_d, g \delta_d \psi \} \in [X, K(Y)]((d, d') \in D, d, d' < i^2, \forall i) \right|$$

where γ_d: $K(Y) \to K(Y)$ and δ_d: $K(X) \to K(X)$ are homotopy equivalences satisfying $\gamma_d \phi_d \sim \varphi$ and $\delta_d \psi \sim \theta_d$.

Proof. It follows from diagram 3.4.1 that if $\xi'(d, d') = f'$ then $\phi_d f' \sim g \in \theta_d$. Suppose $\xi'(d, d')$ belongs to $\ker(G(X, Y, f) \to G(X) \times G(Y))$. The above homotopy together with the homotopies $\gamma_d \phi_d \sim \varphi$ and $\delta_d \psi \sim \theta_d$ imply that $\gamma_d^{-1} \psi f' \sim g \delta_d \psi$ (where γ_d^{-1} denotes the homotopy inverse of γ_d) or equivalently that $\psi f' \sim \gamma_d \phi_d \delta_d \psi$. The truth of the lemma follows from the last homotopy and from the fact that the map $[X, Y] \to \text{Hom}(H^*(Y, Q), H^*(X, Q))$ is one-to-one (Zabrodsky [9, Lemma 5.3.1]).

Remark. By 3.17 it is enough to take pairs $(d, d') \in D$ which satisfy $d_i, d'_i < i^2$ for every i.

5.2. Examples of maps for which the map $G(X, Y, f) \to G(X) \times G(Y)$ is a monomorphism. (All the maps considered are assumed to satisfy the conditions of Theorem I.)

Example 1. $A \to K = n$finite $k(Z, n)$, $H^*(X, Z)$ is torsion free and $H^*(f, Z)$ is onto.

Every $d' \in Z^{(K)}$ can be realized in K. Assume that $(d, d') \in D$ and that d can be realized in X. Let $h: X \to X$ be a map which realizes d. As $H^*(f, Z)$ is onto d_n / d'_n whenever $QH^*(X, Q) \neq 0$. Consequently there exists a map $k: K \to K$ which realizes d' and satisfies $fh \sim kf$. Therefore by Proposition 3.11, $\xi(d, d') = f$ and the map $G(X, K, f) \to G(X) \times G(K) \to G(X)$ is an isomorphism.

Example 2. $f: X \to K(X), f$ is a rational equivalence and $H^*(f, Z)$ is onto.

$G(f) \cong G(X)$, since if $f': X \to K(X)$ belong to $G(f)$ there exists a pull-back diagram

\[
\begin{array}{ccc}
X & \overset{h}{\to} & X \\
\downarrow f' & & \downarrow f \\
K(X) & \overset{k}{\to} & K(X)
\end{array}
\]

where h and k are f-equivalences (Lemma 4.2). Consequently $H^*(f', Z)$ is onto and there exists a homotopy equivalence $g: K(X) \to K(X)$ so that $gf' \sim f$.

To state the next two examples one needs the following notations: If X is a CW-complex denote by $h_n: X \to X_n$ the homotopy approximation of X in dim $< n$ (i.e. $\pi_k h_n$ is an isomorphism for $k < n$ and $\pi_k X_n = 0$ for $k > n$).
Example 3. $h_n: X \to X_n$.

Assume that $(d, d') \in D$ and that d and d' can be realized in X and X_n, respectively. Since if $f: X \to X$ realizes d, $f_n: X_n \to X_n$ realizes d', one obtains from Proposition 3.11 that $\xi(d, d') = h_n$ and the map $G(h_n) \to G(X) \times G(X_n)$ is a monomorphism. Moreover, since the map $H^k(h_n, Z)$ is an isomorphism in $\dim n$, the composition $G(h_n) \to G(X) \times G(X_n) \to G(X)$ is an isomorphism and $G(h_n) \cong G(X)$.

Example 4. $f: SU(w) \to SU_{2n-1}$, $m < n$, and $H^*(f, Z)$ is onto.

Assume that $(d, d') \in D$, that d and d' can be realized in $SU(m)$ and SU_{2n-1}, respectively, and that $\xi(d, d') = g \in G(f)$. Since $f_{2k}: \pi_{2k}SU(m) \to \pi_{2k}SU_{2n-1}$ is an isomorphism in $\dim < 2m - 1$ and an epimorphism in $\dim 2m$, g_{2k} is also an isomorphism in $\dim < 2m - 1$ and an epimorphism in $\dim 2m$. Therefore $H^k(g, Z)$ is an epimorphism and the fact that the map $G(f) \to G(SU(m)) \times G(SU_{2n-1})$ is a monomorphism follows from the next lemma:

5.3. Lemma. Given maps $f_1, f_2: SU(m) \to SU_{2n-1}$ so that $H^*(f_1, Z)$ and $H^*(f_2, Z)$ are surjections. There exists a homotopy equivalence $g: SU_{2n-1} \to SU_{2n-1}$ so that $gf_1 \sim f_2$.

Proof. By Lemma 1.5 in Zabrodsky [7], there exists a map $g: SU_{2n-1} \to SU_{2n-1}$ so that $gf_1 \sim f_2$. Obviously $H^k(g, Z)$ is an isomorphism for $k < 2m - 1$. Assume that g is not a homotopy equivalence and that k is the least integer for which $QH^{2k+1}(g, Z) \neq \pm 1$. Consider the diagram

where g'_{2k+1} is a homotopy equivalence which covers the homotopy equivalence g_{2k-1}. (By Zabrodsky [7, Corollary 1.4] such a homotopy equivalence exists.)

As $h_{2k-1}f_2 \sim g_{2k-1}h_{2k-1}f_1$ and the fibration $K(Z, 2k + 1) \to SU_{2k+1} \to SU_{2k-1}$ is principal, there exists $w \in [SU(m), K(Z, 2k + 1)]$ so that $h_{2k+1}f_2 \sim w \ast (g'_{2k+1}h_{2k+1}f_1)$ where \ast is the action of $[SU(m), K(Z, 2k + 1)]$ on $[SU(m), SU_{2n-1}]$. Obviously w is decomposable. Since $H^*(f_1, Z)$ is onto there exists a decomposable element $\bar{w} \in [SU_{2k+1}, K(Z, 2k + 1)]$ so that $w \sim \bar{w}h_{2k+1}f_1$. Define $g'_{2k+1} = \bar{w} \ast g'_{2k+1}$. Obviously g'_{2k+1} is a homotopy equivalence and $g''_{2k+1}h_{2k+1}f_1 \sim h_{2k+1}f_2$. Consequently g''_{2k+1} can be lifted to a homotopy equivalence $g'': SU_{2n-1} \to SU_{2n-1}$ so that $g''f_1 \sim f_2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
6. Computation of $G(a)$, $G_y(a)$ and $G_{K(G,n)}(a)$ for some fibrations $X \xrightarrow{f} Y \rightarrow K(G,n)$. We assume that all the fibrations in this section are Hopf fibrations which satisfy the conditions of Theorem I.

In order to calculate $G(a)$, $G_y(a)$ and $G_{K(G,n)}(a)$ (in some of the cases) we need the following lemma:

6.1. Lemma. If the fibration $K(G,n - 1) \rightarrow X \rightarrow Y$ is induced by a: $Y \rightarrow K(G,n)$ then $G(f) \cong G(a)$ and $G_{y}(f) \cong G_{y}(a)$.

Proof. Suppose $X \xrightarrow{f'} Y \rightarrow K(G,n)$ belongs to $G(a)$. Define maps h: $G(a) \rightarrow G(f)$ by $a' \mapsto f'$ where f' is the fiber of a' and k: $G(f) \rightarrow G(a)$ by $f' \mapsto a'$ where f' is induced by a'. As each of the maps h and k is the inverse of the other $G(f) \cong G(a)$. The fact that $G_y(a) \cong G_y(f)$ is proved similarly.

Case 1. $F \rightarrow K(Z,m) \rightarrow K(Z,n)$.

Obviously $G(a) = 0$ for $n < m$. Assume that $n > m$ and that $(d, d') \in D \subseteq Z^2$. Since $H^n(a, Z) = 0$ there is no relation between d and d'. In contrast with this, the existence of maps h: $K(Z,m) \rightarrow K(Z,m)$ and k: $K(Z,n) \rightarrow K(Z,n)$ satisfying $ah \sim ka$ implies that $d \equiv d' \pmod{|a|}$. Consequently $G(a) \cong [(Z_{|a|}/ |± 1|]$.

For the same reason $G_{K(Z,m)}(a) \cong G_{K(Z,m)}(a) \cong [(Z_{|a|}/ |± 1|]$.

Case 2. $F \rightarrow K(Z^l,n) \rightarrow K(Z^l,n)$.

$G(a) = 0$, since one can choose bases for $H^n(K(Z^l,n), Z) = Z^l$ and $H^n(K(Z^m,n), Z) = Z^m$ in which $H^n(a, Z)$ is represented by a diagonal matrix and use these bases together with the conditions on D to construct for every pair $(d, d') \in D$ maps h: $K(Z^m,n) \rightarrow K(Z^m,n)$ and k: $K(Z^l,n) \rightarrow K(Z^l,n)$ which realize d and d', respectively and satisfy $ah \sim ka$.

In the same way we obtain that $G_{K(Z^m,n)}(a) = G_{K(Z^m,n)}(a) = 0$.

Case 3. $F \rightarrow K(Z^l,n) \rightarrow K(Z^p,n)$ ($k, l > 1$).

We prove that $G(a) = 0$ by constructing to each vector (x_1, \ldots, x_l) ($x_i \in Z_{p^k}$) and to each number $d \in Z_{p^k}$ an $l \times l$ matrix A (over Z) so that $\det A = d$ and $A(x_1, \ldots, x_l) \equiv (dx_1, \ldots, dx_l) \pmod{p^k}$.

Consider the vector (x_1, \ldots, x_l). Each x_i is of the form $x_i = a_pp^{k_i}$ where $(a, p) = 1$. Without loss of generality assume that $k_1 < k_i$ for every i. Let b be an integer satisfying $a_i b \equiv 1 \pmod{p^k}$ and let $A = (a_{ij})$ be the following matrix:

$$A = \begin{pmatrix}
 d \\
 \vdots \\
 b(d-1)a_pp^{k_1-k_i} \\
 \vdots \\
 \vdots \\
 0 & 1
\end{pmatrix}$$
namely

\[
a_{ij} = \begin{cases}
 d, & i = 1, j = 1, \\
 b(d-1)a_p^{h_i}k_i, & i \neq 1, j = 1, \\
 1, & i \neq 1, j = i, \\
 0, & \text{otherwise.}
\end{cases}
\]

Obviously \(\det A = d \) and \(A(x_1, \ldots, x_i) \equiv (dx_1, \ldots, dx_i) \pmod{p^k} \). \((a_{ij}x_j \equiv (d - 1)x_j \pmod{p^k}) \) for \(i > 1 \).

Case 4. \(F \rightarrow K(G, m) \rightarrow K(H, m) \), \(G \) and \(H \) are finite \(p \)-groups.

It is obvious that \(G(a) \approx G_{K(G, m)}(a) \approx G_{K(H, m)}(a) = 0 \).

Case 5. \(X_{n+1} \rightarrow X_n \rightarrow K(G, n+2) \), the Postnikov approximation of \(X \).

It follows from Lemma 6.1 and from Example 3 in §5 that \(G(a) \approx G(h_n) \approx G(X_{n+1}) \).

Case 6. \(X \rightarrow Y \rightarrow K(G, n) \), \(\pi_n a \) is an epimorphism.

Suppose \(X \rightarrow Y \rightarrow K(G, n) \) is in \(G_Y(a) \). Let \(k, k': X \rightarrow X \) be \(i \)-equivalences satisfying \(fk \sim f' \) and \(f'k' \sim f \) (by Theorem 2.2 such \(i \)-equivalences exist). We shall prove that \(G_Y(a) \approx G(X) \) by showing that \(k \) is a homotopy equivalence.

It is obvious that \(A_m: \pi_m X \rightarrow \pi_m X \) is an isomorphism for \(m \neq n, n - 1 \) and that \(\pi_n k \) and \(\pi_n f \) are monomorphisms. As \(\pi_n a \) is onto \(\pi_{n-1} k \) is also an isomorphism. Consequently in order to prove that \(k \) is a homotopy equivalence it is enough to prove that \(\pi_n k \) is an epimorphism. But \(\pi_n f \circ \pi_n k = \pi_n f' \) and \(\pi_n f' \circ \pi_n k' = \pi_n f \); hence \(\pi_n f(\pi_n k \circ \pi_n k') = \pi_n f \circ \pi_n k \circ \pi_n k' = 1 \) and \(\pi_n k \) is an epimorphism.

Case 7. \(X \rightarrow Y \rightarrow K(G, n) \), \(G \) is a finitely generated free group, \(H^n(Y, Z) \) is torsion free and \(H^n(a, Z) \) is a surjection.

Assume that \(d = (d_1, \ldots, d_{l(Y)}) \in Z^{l(Y)} \) can be realized by a map \(h: Y \rightarrow Y \) and \((d', d') \in D \subseteq Z^{l(Y)+1} \). As \(\ker H^n(a, Z) = 0 \) implies \(d_n = d' \) and \(\ker H^n(a, Z) \neq 0 \) implies \(d_n / d' \), there exists a map \(k: K(G, n) \rightarrow K(G, n) \) which realizes \(d' \) and satisfies \(ka \sim ah \). Hence by Proposition 3.11, \(\xi(d, d') = a \) and consequently \(G(a) \approx G(Y) \).

7. Noncancellation. In the following proposition we use the notations of Theorem 3.2.

7.1. Proposition. Let \(X \) and \(Y \) be \(H_0 \)-spaces so that \(QH^i(X, Q) \neq 0 \) for \(1 \leq i < l(X) \) and \(QH^i(Y, Q) \neq 0 \) for \(1 < i < l(Y) \), and let \(\psi: X \rightarrow K(X) \) and \(\varphi: Y \rightarrow K(Y) \) be rational equivalences. Denote by \(t \) the least common multiple of \(t(X, \psi) \) and \(t(Y, \varphi) \). Assume that

\[
d = (d_{n(X)}, \ldots, d_{n(X)}) \in [(Z_t^*)/\pm 1]^{l(X)} \quad \text{and}
\]

\[
d' = (d_{m(Y)}, \ldots, d_{m(Y)}) \in [(Z_t^*)/\pm 1]^{l(Y)}
\]
satisfy the following conditions:

(a) \[d'_m = \begin{cases} d_n, & m_i = n_j, \\ 1, & m_i \neq n_j \text{ for every } j. \end{cases} \]

(b) \[d_n = \begin{cases} d'_m, & n_i = m_j, \\ 1, & n_i \neq m_j \text{ for every } j. \end{cases} \]

If \(X' = \xi(d) \in G(X) \) and \(Y' = \xi(d') \in G(Y) \) then \(X' \times Y \approx X \times Y' \).

Proof. It follows from the definition of \(\xi \) that if \(Y' = \xi(d') \in G(Y) \) then \(Y = \xi((d')^{-1}) \in G(Y') \). Consequently \(X' \times Y = \xi(1, \ldots, 1) \in G(X \times Y') \) and \(X' \times Y \approx X \times Y' \).

An immediate consequence of this proposition is

7.2. **Corollary.** Let \(X \) be an H-space and let \(Y \) be an \(H_0 \)-space. If \(l(X) = l(Y) + 1 \) then for every \(X' \in G(X) \) there exists a \(Y' \in G(Y) \) so that \(X' \times Y \approx X \times Y' \).

Using Corollary 7.2 together with Theorem 2.2 one obtains

7.3. **Lemma.** Let \(F \to X \to Y \) be a fibration satisfying the conditions of Theorem 1.

(a) For every fibration \(F' \to X' \to Y \) in \(G_f \), \(X \times F' \approx X' \times F \).

(b) If \(f \) is a rational equivalence then for every fibration \(F' \to X' \to Y' \) in \(G_f \), \(X \times Y' \approx X' \times Y \).

Proof. (a) Choose bases for \(\pi_n X/\text{torsion} \) and \(\pi_n Y/\text{torsion} \) in which \(\pi_n f/\text{torsion} \) is represented by a diagonal matrix \(A \). Let \(t \) be an integer divisible by \(|\pi_n X| \cdot |\pi_n Y| \) for \(n < \max\{N(X), N(Y)\} \) and by the nonzero elements of \(A \). By Theorem 2.2 there exist \(t \)-equivalences \(h: X' \to X \) and \(k: F' \to F \) so that \(fh \sim f' \) and \(jk \sim h' \).

The choice of \(t \) together with the commutativity of the diagram

\[
\begin{array}{ccc}
\pi_{n+1} Y & \xleftarrow{\pi_n} & \\
\downarrow & & \downarrow \\
\pi_n F' & \xrightarrow{k_g} & \pi_n F \\
\downarrow j_g & & \downarrow j_g \\
\pi_n X' & \xrightarrow{h_g} & \pi_n X \\
\downarrow j_g & & \downarrow j_g \\
\pi_n Y & & \pi_n Y \\
\end{array}
\]

imply that \(\det(k_g|\ker j_g) = 1 \), \(\det(h_g|((\pi_n X'/\text{torsion})/\ker f_g)) = 1 \) and

\[
\det(h_g|\ker f_g) = \det\left(k_g|\left((\pi_n F'/\text{torsion})/\ker j_g\right)\right).
\]

Consequently one obtains from Proposition 7.1 that \(X \times F' \approx X' \times F \).

(b) Let \(t \) as in 3.1 and let \(h: X' \to X \), \(k: Y' \to Y \) be \(t \)-equivalences satisfying \(fh \sim f' \) (by Theorem 2.2 such \(t \)-equivalences exist). Since \(\det(QH^*(h, Z)/\text{torsion}) = \det(QH^*(k, Z)/\text{torsion}) \), \(X' \times Y \approx X \times Y' \).
References

Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel