Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On spectral theory and convexity


Authors: C. K. Fong and Louisa Lam
Journal: Trans. Amer. Math. Soc. 264 (1981), 59-75
MSC: Primary 46H99; Secondary 46A55, 47B15
DOI: https://doi.org/10.1090/S0002-9947-1981-0597867-6
MathSciNet review: 597867
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A compact convex set $ K$ in a locally convex algebra is said to be a spectral carrier if, for all $ x$, $ y \in K$, we have $ xy = yx \in K$ and $ x + y - xy \in K$. We show that if a compact convex set $ K$ is a spectral carrier, then the idempotents in $ K$ are exactly the extreme points of $ K$ and form a complete lattice. Conversely, if a compact set $ K$ is a closed convex hull of a lattice of commuting idempotents, then $ K$ is a spectral carrier. Furthermore, a metrizable spectral carrier is a Choquet simplex if and only if its extreme points form a chain of idempotents.


References [Enhancements On Off] (What's this?)

  • [1] Erik M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57. MR 0445271
  • [2] G. Choquet, Lectures on analysis. Vol. II, Benjamin, New York, 1969.
  • [3] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
    Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163
    Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral operators; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1971 original; A Wiley-Interscience Publication. MR 1009164
  • [4] -, Linear operators. Part III: Spectral operators, Interscience, New York, 1962.
  • [5] I. C. Gohberg and M. G. Kreĭn, Theory and applications of Volterra operators in Hilbert space, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. MR 0264447
  • [6] Leopoldo Nachbin, Topology and order, Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, No. 4, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. MR 0219042
  • [7] J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc. 1 (1959/1960), 334–343. MR 0126167
  • [8] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. MR 0193469
  • [9] D. R. Smart, Conditionally convergent spectral expansions, J. Austral. Math. Soc. 1 (1959/1960), 319–333. MR 0126166
  • [10] G. T. Whyburn, Topological analysis, Princeton Univ. Press, Princeton, N. J., 1964.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46H99, 46A55, 47B15

Retrieve articles in all journals with MSC: 46H99, 46A55, 47B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0597867-6
Keywords: Extreme point, spectral carrier, spectral decomposition, facial ideal, chain of idempotents, simplex
Article copyright: © Copyright 1981 American Mathematical Society