Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A representation-theoretic criterion for local solvability of left invariant differential operators on nilpotent Lie groups


Author: Lawrence Corwin
Journal: Trans. Amer. Math. Soc. 264 (1981), 113-120
MSC: Primary 22E30; Secondary 58G15
DOI: https://doi.org/10.1090/S0002-9947-1981-0597870-6
MathSciNet review: 597870
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a left invariant differential operator on the nilpotent Lie group $ N$. It is shown that if $ \pi (L)$ is invertible for all irreducible representations $ \pi $ in general position (and if the inverses satisfy some mild technical conditions), then $ L$ is locally solvable. This result generalizes a theorem of $ {\text{L}}$. Rothschild.


References [Enhancements On Off] (What's this?)

  • [1] L. Corwin and F. P. Greenleaf, Character formulas and spectra of compact nilmanifolds, J. Funct. Anal. 21 (1976), 123-154. MR 0393345 (52:14155)
  • [2] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. MR 0498737 (58:16803a)
  • [3] M. Duflo, Caractères des groupes et des algèbres de Lie resolubles, Ann. Sci. École Norm. Sup. (4) 3 (1970), 23-74. MR 0269777 (42:4672)
  • [4] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), 57-110; English transl. in Russian Math. Surveys. MR 0142001 (25:5396)
  • [5] C. C. Moore, Representations of solvable and nilpotent groups and harmonic analysis on nil and submanifolds, Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1974, pp. 3-44. MR 0385001 (52:5871)
  • [6] L. Pukanszky, Leçons sur les représentations des groupes, Dunod, Paris, 1967. MR 0217220 (36:311)
  • [7] -, On the characters and the Plancherel formula of nilpotent groups, J. Funct. Anal. 1 (1967), 255-280. MR 0228656 (37:4236)
  • [8] M. Rais, Solutions elementaires des opérateurs differentials bi-invariants sur un groupe de Lie nilpotent, C. R. Acad. Sci. Paris Ser. A-B 273 (1971), A495-A498. MR 0289720 (44:6908)
  • [9] C. Rockland, Hypoellipticity on the Heisenberg group--Representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52. MR 0486314 (58:6071)
  • [10] L. Rothschild, Local solvability of left invariant differential operators on the Heisenberg group, Proc. Amer. Math. Soc. 74 (1979), 383-388. MR 524323 (81i:22006)
  • [11] Lars Hörmander, Linear partial differential operators, Die Grundlehren der Math. Wissenschaften, Bd. 116, Springer-Verlag, Berlin and New York, 1963.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30, 58G15

Retrieve articles in all journals with MSC: 22E30, 58G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0597870-6
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society