Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homotopy groups of the space of self-homotopy-equivalences


Author: Darryl McCullough
Journal: Trans. Amer. Math. Soc. 264 (1981), 151-163
MSC: Primary 55P10; Secondary 55N25, 55S35, 55S37, 57N65, 57T99
DOI: https://doi.org/10.1090/S0002-9947-1981-0597873-1
MathSciNet review: 597873
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a connected sum of $ r$ closed aspherical manifolds of dimension $ n \geqslant 3$, and let $ EM$ denote the space of self-homotopy-equivalences of $ M$, with basepoint the identity map of $ M$. Using obstruction theory, we calculate $ {\pi _q}(EM)$ for $ 1 \leqslant q \leqslant n - 3$ and show that $ {\pi _{n - 1}}(EM)$ is not finitely-generated. As an application, for the case $ n = 3$ and $ r \geqslant 3$ we show that infinitely many generators of $ {\pi _1}(E{M^3},{\text{i}}{{\text{d}}_M})$ can be realized by isotopies, to conclude that $ {\pi _1}({\text{Homeo}}({M^3}),{\text{i}}{{\text{d}}_M})$ is not finitely-generated.


References [Enhancements On Off] (What's this?)

  • [B] E. Bloomberg, Manifolds with no periodic homeomorphisms, Trans. Amer. Math. Soc. 202 (1975), 67-78. MR 0358842 (50:11301)
  • [F] H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340-361. MR 0079265 (18:59b)
  • [F-K] D. Frank and D. W. Kahn, Finite complexes with infinitely-generated groups of self-equivalences, Topology 16 (1977), 189-192. MR 0478140 (57:17629)
  • [G] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856. MR 0189027 (32:6454)
  • [H1] H. Hendriks, Sur les équivalences d'homotopie en dimension $ 3$, Dissertation, University of Paris at Orsay, 1975.
  • [H2] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172. MR 0068218 (16:847d)
  • [K] H. Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z. 25 (1926), 362-372. MR 1544816
  • [M1] D. McCullough, Connected sums of aspherical manifolds, Indiana Univ. Math. J. 29 (1980). MR 600029 (82e:55013a)
  • [M2] -, Homotopy groups of the space of self-homotopy equivalences, Dissertation, University of Michigan, 1978.
  • [M3] -, Finite aspherical complexes with infinitely-generated groups of self-homotopy-equivalences, Proc. Amer. Math. Soc. 80 (1980), 337-340. MR 577770 (81k:55008)
  • [S] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Étude Sci. Publ. Math. 47 (1977), 269-331. MR 0646078 (58:31119)
  • [W] C. W. Wilkerson, Applications of minimal Simplicial groups, Topology 15 (1976), 111-130. MR 0402737 (53:6551)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P10, 55N25, 55S35, 55S37, 57N65, 57T99

Retrieve articles in all journals with MSC: 55P10, 55N25, 55S35, 55S37, 57N65, 57T99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0597873-1
Keywords: Self-homotopy-equivalence, homeomorphism group, obstruction theory, aspherical manifold, $ 3$-manifold, isotopy
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society