THE \aleph_2-SOUSLIN HYPOTHESIS

BY

RICHARD LAVER1 AND SAHARON SHELAH2

ABSTRACT. We prove the consistency with CH that there are no \aleph_2-Souslin trees.

The \aleph_2-Souslin hypothesis, SH_{\aleph_2}, is the statement that there are no \aleph_2-Souslin trees. In Mitchell's model [5] from a weakly compact the stronger statement holds (Mitchell and Silver) that there are no \aleph_2-Aronszajn trees, a property which implies that $2^{\omega_0} > \omega_1$.

THEOREM. Con($ZFC + \text{there is a weakly compact cardinal}$) implies

Con($ZFC + 2^{\omega_1} = \aleph_1 + \text{SH}_{\aleph_1}$).

In the forcing extension, 2^{ω_1} is greater than \aleph_2, and can be arbitrarily large. Analogues of this theorem hold with \aleph_2 replaced by the successor of an arbitrary regular cardinal. Strengthenings and problems are given at the end of the paper.

Let \mathfrak{M}_0 be a ground model in which κ is a weakly compact cardinal. The extension which models SH_{κ} and CH is obtained by iteratively forcing $> \kappa^+$ times with certain κcc, countably closed partial orders, taking countable supports in the iteration. For $\alpha > 1$, $(\mathcal{P}_\alpha, <)$ is the ordering giving the first α steps in the iteration. \mathcal{P}_α is a set of functions with domain α.

Let $L_{\kappa, \kappa}$ be the Levy collapse by countable conditions of each $\beta \in [\kappa_1, \kappa)$ to κ_1 (so κ is the new κ_2). Then \mathcal{P}_1 (isomorphic to $L_{\kappa, \kappa}$) is $\{f: \text{dom } f = 1, f(0) \in L_{\kappa, \kappa}\}$, ordered by $f < g$ iff $f(0) < g(0)$. To define $\mathcal{P}_{\beta+1}$, choose a term A_β in the forcing language of \mathcal{P}_β for a countably closed partial ordering (to be described later) and let $\mathcal{P}_{\beta+1} = \{f: \text{dom } f = \beta + 1, f \uparrow \beta \in \mathcal{P}_\beta, \exists \bar{f} \in A_\beta \}$, ordered by $f < g$ iff $f \uparrow \beta < g \uparrow \beta$ and $g \uparrow \beta \# f \uparrow \beta (f(\beta) < g(\beta))$. For α a limit ordinal, $\mathcal{P}_\alpha = \{f: \text{dom } f = \alpha, f \uparrow \beta \in \mathcal{P}_\beta$ for all $\beta < \alpha$, and $f(\beta)$ is (the term for) \emptyset, the least element of A_β, for all but $< \kappa_0\beta$'s}, ordered by $f < g$ iff for all $\beta < \alpha, f \uparrow \beta < g \uparrow \beta$.

Each \mathcal{P}_α is countably closed. We are done as in Solovay-Tennenbaum [7] if the A_β's can be chosen so that each \mathcal{P}_α has the κcc, and therefore that every κ_2 ($= \kappa$)-Souslin tree which crops up gets killed by some A_β.

If T is a tree then $(T)_\lambda$ is the λth level of T, $(T)_\lambda = \bigcup_{\mu < \lambda} T_\mu$. Regarding the previous problem, it is a theorem of Mitchell that if CH and $\diamondsuit(\alpha < \omega_2: cf(\alpha) = \aleph_1)$ hold, then there are countably closed \aleph_2-Souslin trees T_n, $n < \omega$, such that for
each $m < \omega$, $\otimes_{n<m} T_n$ has the $\mathfrak{N}_{2\text{cc}}$, but $\otimes_{n<\omega} T_n$ does not have the $\mathfrak{N}_{2\text{cc}}$. We give for interest his proof modulo the usual Jensen methods. At stage $\mu < \omega_2$ construct each $(T_n)_\mu$ normally above $(T_n)_{<\mu}$. If $\mu = \nu + 1$ let each $x \in (T_n)_\mu$ have at least two successors in $(T_n)_{<\mu}$. If $cf(\mu) = \omega$ let all branches in $(T_n)_{<\mu}$ go through. If $cf(\mu) = \omega_1$ make sure that the antichain given by the \diamond-sequence for $\otimes_{n<m} T_n$ is taken care of, and choose $\langle c_{\mu n} : n < \omega \rangle \in \otimes_{n<\omega} (T_n)_\mu$ so that if $\mu' < \mu$, $cf(\mu') = \omega_1$, then $\langle c_{\mu'n} : n < \omega \rangle \not\prec \langle c_{\mu n} : n < \omega \rangle$. We also carry along the following induction hypothesis: if $v < \mu$, $\langle x_n : n < \omega \rangle \in \otimes_{n<\omega} (T_n)_v$, $m < \omega$, $\langle y_n : n < m \rangle \in \otimes_{n<m} (T_n)_\mu$, $x_n < y_n (n < m)$ and $\langle x_n : n < \omega \rangle \not\prec \langle c_{\lambda n} : n < \omega \rangle$, for all $\lambda < \omega$ with $cf(\lambda) = \omega_1$, then there are $y_n \in (T_n)_\mu (m < n < \omega)$ with $x_n < y_n$, such that $\langle y_n : n < \omega \rangle \not\prec \langle c_{\lambda n} : n < \omega \rangle$, for all $\lambda < \mu$ with $cf(\lambda) = \omega_1$.

If δ is inaccessible, then forcing with $L_{\kappa,\delta}$ (whence $2^{\kappa_0} = \mathfrak{N}_1$, $2^{\kappa_1} = \mathfrak{N}_2 = \delta$, and $\diamond \{ \alpha < \kappa_2 : cf(\alpha) = \omega_1 \}$ hold) followed by forcing with the $\otimes_{n<\omega} T_n$ constructed previously, gives a countably closed length ω iteration of countably closed, δcc partial orderings which does not have δcc.

The previous theorem does not rule out that an iteration of \mathfrak{N}_{2}-Souslin trees can give CH and SH_{κ_1}: in this paper, though, the \mathfrak{N}_{2}-Souslin trees are killed by a different method. Let T be an \mathfrak{N}_{2}-Souslin tree (we may assume without loss of generality that T is normal and $\text{Card}(T)_1 = \mathfrak{N}_1$). The antichain partial order A_T is defined to be $\{(x \subseteq T : x a countable antichain, \text{root } T \notin x), \subseteq\}$. Now A_T need not have the $\mathfrak{N}_{2\text{cc}}$, as shown by the following result of the first author: $\text{Con}(ZFC)$ implies $\text{Con}(ZFC + \text{"there is an } \mathfrak{N}_{2}\text{-Souslin tree } T \text{ and a sequence } \langle d_{\alpha n} : n < \omega \rangle \text{ from } (T)_\alpha, \text{ for each } \alpha < \omega_2, \text{ such that if } \alpha < \beta, \text{ there is an } m < \omega \text{ with } d_{\alpha n} < d_{\beta n}, \text{ for all } n > m\}$.) Namely, start with a model of CH. Determine in advance that, say, $(T)_\alpha = [\omega_1,\omega_1(\alpha + 1))$ and that $d_{\alpha n} = \omega_1\alpha + n$. Conditions are countable sub-trees S of T such that if $S \cap (T)_\alpha \neq \emptyset$ then $\{d_{\alpha n} : n < \omega\} \subseteq S$, which meet the requirements on the $d_{\beta n}$'s.

Devlin [2] has shown that such a tree exists in L.

We show now that if each A_β is an A_T, T an \mathfrak{N}_{2}-Souslin tree, then each \mathcal{P}_α has the κcc, which will prove the theorem (we actually just use that Card $T < \kappa$ the cardinal designated as the new 2^{κ_1} and T has no ω_2-paths; see remarks at the end). This theorem was originally proved by the first author when κ is measurable; that the assumption can be weakened to weak compactness of κ is due to the second author.

We consider now only the case $\alpha < \kappa^+$ (which will suffice, assuming $2^\kappa = \kappa^+$ in \mathcal{M}, for $CH + SH_{\kappa_1} + 2^{\kappa_1} = \mathfrak{N}_3$); α arbitrary will be dealt with at the end.

Fix α for the rest of the proof. We assume by induction that

(1) For each $\beta < \alpha$, \mathcal{P}_β has the κcc.

(One more induction hypothesis is listed later.)

For $\beta < \alpha$, let T_β be the βth \mathfrak{N}_{2}-Souslin tree, so $\mathcal{P}_{\beta+1} = \mathcal{P}_\beta \overset{\otimes}{\times} A_\beta$, where $A_\beta = A_{T_\beta}$. Assume without loss of generality that for each $\lambda < \kappa$,

$$(T_\beta)_\lambda \subseteq [\omega_1\lambda, \omega_1(\lambda + 1)).$$

An $f \in \mathcal{P}_\beta$, $\beta < \alpha$, is said to be determined if there is in \mathcal{M} a sequence $\langle z_\gamma : \gamma \in \text{dom } f - \{0\} \rangle$ of countable sets of ordinals such that for all $\gamma \in \text{dom } f - \{0\}$,
THE \mathcal{K}_2-SOUSLIN HYPOTHESIS

413

If \(f_\gamma : n < \omega \to \mathbb{R} \) is a sequence of determined members of \mathcal{P}_β, with \(f_n < f_{n+1} \), then the coordinatewise union f_ω of the f_n's is seen to be a determined member of \mathcal{P}_β extending each f_n. From this it may be seen, by induction on $\beta < \alpha$, that the set of determined members of \mathcal{P}_β is cofinal in \mathcal{P}_β. Redefine each \mathcal{P}_β then to consist just of the determined conditions. Clearly Card $\mathcal{P}_\beta < \kappa$, for all $\beta < \alpha$.

For $f, g \in \mathcal{P}_\beta$, $f \sim g$ means that f and g are compatible.

Fix for the rest of the proof a one-one enumeration $\alpha = \{ \alpha_\mu : \mu \in S \}$, for some $S \subseteq \kappa$ (this induces a similar enumeration of each $\beta < \alpha$, the induction hypothesis (2) for β below, is with respect to this induced enumeration). For notational simplicity we now assume that S is some $\kappa' < \kappa$.

\[
\gamma = 0 \Rightarrow h(\gamma) = f(\gamma) \uparrow (\omega_1 \times \lambda), \quad \gamma > 0 \Rightarrow h(\gamma) = f(\gamma) \cap \lambda.
\]

The function $f|\lambda$ need not be a condition, but for $g \in \mathcal{P}_\beta$, we will still write $f|\lambda < g$ to mean that $f|\lambda$ is coordinatewise a subset of g. Let $\mathcal{P}_\beta|\lambda = \{ f \in \mathcal{P}_\beta : f|\lambda = f \}$.

Suppose $0 < \beta < \alpha$, $\lambda < \kappa$. Define

\[
\sharp^\beta_\lambda(f, g, h) \iff f, g \in \mathcal{P}_\beta, f|\lambda = g|\lambda = h,
\]

\[
\dagger^\beta_\lambda(f, h) \iff f \in \mathcal{P}_\beta, h \in \mathcal{P}_\beta|\lambda \text{ and for every } h' \geq h \text{ with } h' \in \mathcal{P}_\beta|\lambda, h' \sim f,
\]

\[
\delta^\beta_\lambda(f, g, h) \iff \dagger^\beta_\lambda(f, h) \text{ and } \delta^\beta_\lambda(g, h).
\]

For $P \subseteq Q$, $P \subseteq_{\text{reg}} Q$ means that P is a regular subordering of Q, that is, any two members of P compatible in Q are compatible in P, and every maximal antichain of P is a maximal antichain of Q. If $\mathcal{P}_\beta|\lambda \subseteq_{\text{reg}} \mathcal{P}_\beta$, then $\delta^\beta_\lambda(f, g, h)$ states that $h \uparrow \gamma_{\mathcal{P}_\beta} \uparrow [f] \neq 0$.

Recall that the sets of the form $\{ \lambda < \kappa : (R, A, \in, A \cap R) \vdash \Phi \}$, where $A \subseteq \kappa$, Φ is τ_1, and $(R, A, \in, A) \vdash \Phi$, belong to a normal uniform filter \mathcal{T}_w, the weakly compact filter on κ (see [9], [8]). The second thing we assume by induction is

(2) for all $\beta < \alpha$, for \mathcal{T}_w-almost all $\lambda < \kappa$, for all f, g, h, $\sharp^\beta_\lambda(f, g, h)$ implies that for some $h' \geq h$, $\delta^\beta_\lambda(f, g, h')$.

If $\beta < \alpha$, $\lambda < \kappa$, say that $(T_\beta)_{< \lambda}$ is determined by $\mathcal{P}_\beta|\lambda$ if for each θ, τ in $(T_\beta)_{< \lambda}$ there is a \mathcal{P}_β-maximal antichain R of conditions deciding the ordering between θ and τ in T_β, such that $R \subseteq \mathcal{P}_\beta|\lambda$.

Lemma 1. There is a closed unbounded set of $\lambda < \kappa$ such that for all $\mu < \lambda$, $(T_\alpha)_{< \lambda}$ is determined by $\mathcal{P}_\alpha|\lambda$.

Proof. This is a consequence of the strong inaccessibility of κ and the assumption that each \mathcal{P}_β, $\beta < \alpha$, has kcc.
Lemma 2. For \mathcal{P}_we-almost all $\lambda < \kappa$,
(a) λ is strongly inaccessible.
(b) For all $\mu < \lambda$, $\mathcal{P}_\alpha^\lambda | \lambda$ has the λ-cc.
(c) For all $\mu < \lambda$, $\mathcal{P}_\alpha^\lambda | \lambda \subseteq \mathcal{P}_\alpha$.
(d) For all $\mu < \lambda$, $\mathcal{P}_\alpha^\lambda | \lambda = \aleph_2$.
(e) For all $\mu < \lambda$, $\mathcal{P}_\alpha^\lambda (T_{\alpha_\gamma} \prec \lambda)$ is an \aleph_2-Souslin tree.

Proof. By π_1^λ reflection and the normality of \mathcal{P}_we.

Lemma 3. Let $\beta < \alpha$, $\lambda < \kappa$, $\mathcal{P}_\beta | \lambda \subseteq \mathcal{P}_\beta$.
(a) If $f \in \mathcal{P}_\beta$, $j \in \mathcal{P}_\beta | \lambda$, and $f \sim j$, then there is an $h > j$ with $\star^\lambda(f, h)$.
(b) If $\star^\lambda(f, g, h)$ and D, E are cofinal subsets of \mathcal{P}_β, then there exists $\langle f', g', h' \rangle > \langle f, g, h \rangle$ with $\star^\lambda(f', g', h')$, $f' \subseteq D$, $g' \subseteq E$, $h < f'$, g'.

Proof. These are standard facts about forcing.

The following is T. Carlson's version of the lemma we originally used here.

Lemma 4. Suppose λ satisfies Lemma 1 and Lemma 2(c), $\mu < \lambda$, and $\star^\lambda(f, h)$. Then $f(\mu) < h$.

Proof. Otherwise there is a $v < \lambda$ with $\alpha_v < \alpha$, and a $\theta \in f(\alpha_v) \cap \lambda$ such that $\theta \not\in h(\alpha_v)$. We have that $h \upharpoonright \alpha_v \vdash \theta$ is T_{α_v}-incomparable with each member of $h(\alpha_v)$; otherwise $\star^\lambda(f, h)$ would be contradicted. Pick an $h' \in \mathcal{P}_\alpha | \lambda$, $h' > h \upharpoonright \alpha_v$, and a $\theta' < \lambda$ such that $h' \vdash \theta'$. Let \tilde{h} be $h' \cup \langle h(\alpha_v) \cup \{\theta'\} \rangle$. Then $h \in \mathcal{P}_\alpha | \lambda$, $h < \tilde{h}$, and $h \sim f$, a contradiction.

Lemma 5. Suppose λ satisfies Lemma 1 and Lemma 2(c), $\mu < \lambda$, and $\star^\lambda(f, g, h)$. Then there is an $\langle f', g', h' \rangle > (f, g, h)$ with $\#(f', g', h')$.

Proof. Choose $(f, g, h) = (f_0, g_0, h_0) < \cdots < (f_n, g_n, h_n) < \cdots$ so that $\star^\lambda(f_n, g_n, h_n)$, $h_n < f_{n+1}$, $h_n < g_{n+1}$. This is done by repeated applications of Lemma 3(a), (b). Then Lemma 4 implies that the coordinatewise union (f', g', h') of the (f_n, g_n, h_n)'s is as desired.

Definition. Suppose $\lambda < \kappa$, $\mu < \lambda$, $f, g \in \mathcal{P}_\alpha$, and suppose θ, τ are nodes of $(T_{\alpha_\gamma} \prec \lambda) (\theta = \tau$ allowed). Then $\langle f, g \rangle$ is said to λ-separate $\langle \theta, \tau \rangle$ if there is a $\gamma < \lambda$ and $\theta', \tau' \in (T_{\alpha_\gamma})$, with $\theta' \neq \tau'$, such that $f(\mu) < \theta', g(\mu) > T_{\alpha_\gamma} \tau'$.

Lemma 6. Suppose λ satisfies Lemmas 1 and 2, $\mu < \lambda$, $\star^\lambda(f, g, h)$, $(\theta, \tau) \subseteq (T_{\alpha_\gamma} \prec \lambda)$, with $\theta = \tau$ allowed. Then there is an $\langle f', g', h' \rangle > \langle f, g, h \rangle$ such that $\star^\lambda(f', g', h')$ and $\langle f', g' \rangle$ λ-separates $\langle \theta, \tau \rangle$.

Proof. Claim. There are $f_0, f_1 > f$, $\tilde{h} > h$, with $\star^\lambda(f_0, \tilde{h})$, $\star^\lambda(f_1, \tilde{h})$, such that $\langle f_0, f_1 \rangle$ λ-separates $\langle \theta, \theta \rangle$ via a $\langle \theta_1, \theta_2 \rangle \in (T_{\alpha_\gamma})$, for some $\gamma < \lambda$.

Proof. Consider the result of taking a generic set $G_{\alpha_\gamma} | \lambda$ over $\mathcal{P}_\alpha | \lambda$ which contains h. In $\mathcal{M}[G_{\alpha_\gamma}], (T_{\alpha_\gamma} \prec \lambda)$ is a λ (= \aleph_2)-Souslin tree. In the further extension $\mathcal{M}[G_{\alpha_\gamma}], \theta$ determines a λ-path through $(T_{\alpha_\gamma} \prec \lambda)$. Since this path is not in $\mathcal{M}[G_{\alpha_\gamma}]$, there must be $\tilde{h} \in G_{\alpha_\gamma} | \lambda$, $\tilde{h} > h$, $f_0, f_1 > f$, $\gamma < \lambda$, $\theta_0, \theta_1 \in (T_{\alpha_\gamma})$, $\theta_0 \neq \theta_1$, with
THE κ_2-SOUSLIN HYPOTHESIS

415

$h \vdash f_0 \models \theta \, <_{\kappa_2} \theta, h' \vdash f_1 \models \theta \, <_{\kappa_2} \theta$, such that $\ast_{\lambda}(f_0, h)$ and $\ast_{\lambda}(f_1, h')$. This gives the claim.

Now, by Lemma 3, choose $(g', h') > (g, h)$ and a $\tau' \in (T_{\kappa_2})_{\gamma}$ so that $\ast_{\lambda}(g', h')$ and $g' \models \tau' <_{\kappa_2} \tau$. Pick $i \in \{0, 1\}$ with $\tau' \neq \theta_i$. Let $f' = f_i, \theta' = \theta_i$. Then (f', g', h') are as desired. This proves the lemma.

We claim that the induction hypotheses (1) and (2) automatically pass up to α if $\operatorname{cf}(\alpha) > \omega$. Namely, (1) holds at α by a Δ-system argument. For (2), suppose that for an \mathcal{T}_{κ_2}-positive set W of λ's there is a counterexample $<f_\lambda, g_\lambda, h_\lambda>$. Let $N_\lambda = (\operatorname{support} f_\lambda \cup \operatorname{support} g_\lambda)$. If $\operatorname{cf}(\alpha) \neq \kappa$ then for some $\beta < \alpha$ and \mathcal{T}_{κ_2}-positive $V \subseteq W$, $\lambda \in V$ implies $N_\lambda \subseteq \beta$, and we are done. If $\operatorname{cf}(\alpha) = \kappa$, pick a closed unbounded set $C \subseteq \kappa$ such that $\langle \sup\{\alpha_\gamma : \gamma < \lambda\} : \lambda \in C \rangle$ is increasing, continuous and cofinal in α and an \mathcal{T}_{κ_2}-positive $V \subseteq W \cap C$ such that for some $\beta < \alpha$ and all $\lambda \in V, N_\lambda \cap \sup\{\alpha_\gamma : \gamma < \lambda\} \subseteq \beta$, then apply (2) at β.

Thus, we may assume for the rest of the proof that α is a successor ordinal or $\operatorname{cf}(\alpha) = \omega$. Fix $\langle \mu_n : n < \omega \rangle$ such that if $\alpha = \beta + 1$ then each μ_n is the μ with $\alpha_\mu = \beta$, and if $\operatorname{cf}(\alpha) = \omega$ then $\langle \alpha_\mu : n < \omega \rangle$ is an increasing sequence converging to α.

Lemma 7. For \mathcal{T}_{κ_2}-almost all λ, the following holds: if $f, g \in \mathcal{P}_\alpha, h \in \mathcal{P}_\alpha|\lambda$ and $\#_{\lambda}(f, g, h)$ then there exists $<f', g', h'> > <f, g, h>$ such that $\#_{\lambda}(f', g', h')$ and such that for each $\mu < \lambda$ with $\alpha_\mu \neq 0$, and each $\theta \in f'(\alpha_\mu) - \lambda, \langle f' \upharpoonright \alpha_\mu, g' \upharpoontright \alpha_\mu \rangle \lambda$-separates $<\theta, \tau>$.

Proof. We prove the lemma for λ, assuming that λ satisfies Lemmas 1 and 2, $\lambda > \mu_n (n < \omega)$ and for each $n < \omega, \lambda$ is in the \mathcal{T}_{κ_2} set given by induction hypothesis (2) for α_n. Construct $<f_n, g_n, h_n>, n < \omega$, so that

(a) $f_n, g_n \in \mathcal{P}_{\alpha_n}, \#_{\lambda}(f_n, g_n, h_n),$

(b) $<f \upharpoonright \alpha_n, g \upharpoontright \alpha_n, h \upharpoontright \alpha_n> < <f_n, g_n, h_n>,$

(c) $<f_n, g_n, h_n> < <f_{n+1}, g_{n+1}, h_{n+1}>,$

(d) if, at stage $n > 1$, $<\theta_n, \tau_n>$ is the nth pair (in the appropriate bookkeeping list for exhausting them) with $\theta_0 \in f_n(\alpha_n) - \lambda, \tau_0 \in g_n(\alpha_n) - \lambda, \nu_n < \lambda, \alpha_n < \alpha_\mu$, then

$$<f_n \upharpoonright \alpha_n, g_n \upharpoontright \alpha_n \lambda$$-separates $<\theta, \tau>.$

Let $f_0 = f \upharpoonright \alpha_\mu, g_0 = g \upharpoontright \alpha_\mu, h_0 = h \upharpoontright \alpha_\mu$. Suppose $n > 1$ and $f_{n-1}, g_{n-1}, h_{n-1}$ have been constructed. Let

$$f' = f_{n-1} \upharpoonright f \upharpoontright \langle \alpha_{\mu_{n-1}}, \alpha_\mu \rangle, \quad g' = g_{n-1} \upharpoonright g \upharpoontright \langle \alpha_{\mu_{n-1}}, \alpha_\mu \rangle, \quad h' = h_{n-1} \upharpoonright h \upharpoontright \langle \alpha_{\mu_{n-1}}, \alpha_\mu \rangle.$$

Then $\#_{\lambda}(f', g', h')$. By induction hypothesis (2), there is an $h_n > h'$ such that $\ast_{\lambda}(f', g', h_n)$. By Lemma 6, there is $<f''_n, g''_n, h''_n> > <f'_n, g'_n, h'_n>$ such that $\ast_{\lambda}(f''_n, g''_n, h''_n)$ and

$$<f''_n \upharpoonright \alpha_n, g''_n \upharpoontright \alpha_n \lambda$$-separates $<\theta_n, \tau_n>.$

Finally, by Lemma 5 we may choose $<f_n, g_n, h_n> > <f''_n, g''_n, h''_n>$ so that $\#_{\lambda}(f_n, g_n, h_n)$. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Taking \(f', g', h' \) to be the coordinatewise unions of the \(f_n \)'s, \(g_n \)'s, \(h_n \)'s gives the lemma.

We now verify the two induction hypotheses.

(1) \(\mathcal{P}_\alpha \) has the kcc.

Proof. Given \(f_\lambda \in \mathcal{P}_\alpha, \lambda < \kappa \). For each \(\lambda \) which satisfies Lemmas 1, 2 and 7, with \(\lambda > \mu_n \ (n < \omega) \), apply Lemma 7 to the triple \(\langle f_\lambda, f_\lambda, f_\lambda \lambda \rangle \), obtaining a triple \(\langle f_\lambda^*, f_\lambda^*, f_\lambda \lambda \rangle \) (so \(f_\lambda \leq f_\lambda^*, f_\lambda^*, f_\lambda \lambda = f_\lambda^* | \lambda = f_\lambda^* | \lambda \)).

Let

\[B_\lambda = (\text{support } f_\lambda^* \cup \text{support } f_\lambda^*) \cap \{ \alpha_\mu : \mu < \lambda \}. \]

If \(0 \neq \alpha_\mu \in B_\lambda \), write

\[f_\lambda^*(\alpha_\mu) - \lambda = \{ \theta_\mu, n < r_\mu \}, \quad r_\mu < \omega, \]

\[f_\lambda^*(\alpha_\mu) - \lambda = \{ \tau_\mu, m < s_\mu \}, \quad s_\mu < \omega. \]

To each pair \(\langle \theta_\mu, \tau_\mu \rangle, n < r_\mu, m < s_\mu \), \(\langle f_\lambda^*, f_\lambda^* \rangle \) assigns a separating pair \(\langle \theta_\mu, \tau_\mu, n < r_\mu, m < s_\mu \rangle \in \lambda \times \lambda \).

Let \(J_\lambda = (\text{dom } f_\lambda^*(0) \cup \text{dom } f_\lambda^*(0)) - (\omega_1 \times \lambda) \).

By the normality of \(\mathcal{P}_\alpha \), there is an \(\mathcal{P}_\alpha \)-positive set \(U \) such that on \(U \), the sets \(B_\lambda, r_\mu, s_\mu, \theta_\mu, \tau_\mu, \lambda \) are independent of \(\lambda \), and such that if \(\lambda, \lambda' \in U, \lambda < \lambda' \), then \(\langle \text{support } f_\lambda^*, \text{support } f_\lambda^* \rangle \cap (\text{support } f_\lambda^*, \text{support } f_\lambda^*) = B_\lambda, \) and \(J_\lambda \cap J_{\lambda'} = \emptyset \).

By induction on \(\gamma < \alpha \) it is seen that if \(\lambda, \mu \in U \) and \(\lambda < \mu \), then \(f_\lambda^* \sim f_\mu^* \).

Namely, there is no trouble with coordinates in the support of at most one of these functions; coordinates in both supports, being in \(B_\lambda \), are taken care of by the construction. Since \(f_\lambda < f_\lambda^* \) and \(f_\mu < f_\mu^* \), we are done.

The following strengthening of kcc for \(\mathcal{P}_\alpha \) has thus been proved: if for an \(\mathcal{P}_\alpha \)-positive set \(W \) of \(\lambda \)'s, \(\#^\alpha(f_\lambda, g_\lambda, h_\lambda) \), then there is an \(\mathcal{P}_\alpha \)-positive \(U \subseteq W \) and \(\langle f_\lambda, g_\lambda, h_\lambda \rangle, \lambda \in U \), such that \(\langle f_\lambda, g_\lambda, h_\lambda \rangle \leq \langle f_\lambda^*, g_\lambda^*, h_\lambda^* \rangle, \#^\alpha(f_\lambda^*, g_\lambda^*, h_\lambda^*) \), and so that if \(\lambda, \mu \in W, \lambda < \mu \), then \(f_\lambda \sim g_\mu \) in the strong sense that the coordinatewise union of \(f_\lambda^* \) and \(g_\mu \) is a condition extending both \(f_\lambda^* \) and \(g_\mu^* \).

Lastly, we prove the second induction hypothesis for \(\alpha \).

(2) For \(\mathcal{P}_\alpha \)-almost all \(\lambda < \kappa \), for all \(f, g, h, \#^\alpha(f, g, h) \) implies that for some \(h' > h \), \(\#^\alpha(f, g, h') \).

Proof. Otherwise for an \(\mathcal{P}_\alpha \)-positive set \(W \) of \(\lambda \)'s there exists a counterexample \(\langle f_\lambda, g_\lambda, h_\lambda \rangle \). We may assume that for each \(\lambda \in W \), \(\lambda > \mu_n \ (n < \omega) \) and \(\lambda \) satisfies Lemmas 1, 2 and 7. Furthermore, since we have already proved that \(\mathcal{P}_\alpha \) has the kcc, we may assume that for each \(\lambda \in W \), \(\mathcal{P}_\alpha | \lambda \subseteq \text{reg } \mathcal{P}_\alpha \) and \(\mathcal{P}_\alpha | \lambda \) has the kcc. If \(f_\lambda \) or \(g_\lambda \) equals \(h_\lambda \), we are done, so assume, for each \(\lambda \in W \), that \(f_\lambda, g_\lambda \notin \mathcal{P}_\alpha | \lambda \).

Apply Lemma 7 to each \(\langle f_\lambda, g_\lambda, h_\lambda \rangle, \lambda \in W \), getting \(\langle f_\lambda, g_\lambda, h_\lambda \rangle \). Now uniformize as in part (a) to get an \(\mathcal{P}_\alpha \)-positive \(V \subseteq W \) such that if \(\lambda, \mu \in V \) and \(\lambda < \mu \) then \(f_\lambda \sim g_\mu \). Since \(\langle f_\lambda, g_\lambda, h_\lambda \rangle \) is a counterexample to (b), there is a maximal antichain \(H_\lambda \) of \(\{ h \in \mathcal{P}_\alpha | \lambda : h > h_\lambda \} \) such that for each \(h \in H_\lambda, h \sim f_\lambda \) or \(h \sim g_\lambda \). Then \(H_\lambda \) is a maximal antichain of \(\{ h \in \mathcal{P}_\alpha : h \succ h_\lambda \} \), and \(\text{Card } H_\lambda < \lambda \). Pick an \(\mathcal{P}_\alpha \)-positive \(U \subseteq V \) on which \(H_\lambda = H \) is independent of \(\lambda \) and such that for each \(h \in H \), the questions, whether or not \(h \sim f_\lambda, h \sim g_\lambda \), are independent of \(\lambda \). Pick
THE \aleph_2-SOUSLIN HYPOTHESIS

$\lambda, \mu \in U, \lambda < \mu$, and let $j > f'_\lambda, g'_\mu$. Now $j > h_\lambda$, and $j \not\in \mathcal{P}_{\alpha} | \lambda$ (whence $j \not\in H$). But for each $h \in H$, either $h \sim g_\lambda$ (whence $h \sim g_\mu$) or $h \sim f'_\lambda$. In either case, $h \sim j$ since $j > f'_\lambda, g'_\mu$, so H is not maximal, a contradiction.

This completes the proof of the theorem.

Denote by an ω_2-tree a tree T of any cardinality with no paths of length ω_2. An ω_2-tree T is special if there is an $f: T \to \omega_1$ such that $x < y$ implies $f(x) \neq f(y)$. By the previous methods, using countable specializing functions instead of countable antichains, the consistency of “$2^{\aleph_1} = \aleph_1$, $2^{\aleph_2} > \aleph_2$, and every ω_2-tree of cardinality $< 2^{\aleph_1}$ is special” is obtained — the analogous theorem for the \aleph_1 case being Baumgartner-Malitz-Reinhardt [1]. We can also get this model to satisfy the “generalized Martin’s axioms” (which are consistent relative to just ZFC but which do not imply SH_{\aleph_2}) that have been considered by the first author and by Baumgartner (see Tall [8]). Desirable, of course, would be the consistency of a generalized MA which is both simple and powerful.

The partial orderings appropriate for the prior methods can be iterated an arbitrary number of times, giving generalized MA models in which 2^κ is arbitrarily large. The ordering \mathcal{R}_{α} giving the first α steps of the iteration need not be of cardinality $< \kappa$, but, assuming each $\mathcal{R}_\beta, \beta < \alpha$, has ccc, any sequence $\langle p_\lambda: \lambda < \kappa \rangle$ from \mathcal{R}_{α} is a subset of a sufficiently closed model of power κ, in which the proof that two p_λ’s are compatible can be carried out.

Regarding the analog of these results where \aleph_2 is replaced by γ^+—the relevant forcing is γ-directed closed, so by upward Easton forcing we may guarantee that, for example, γ remains supercompact if it was in the ground model.

For results involving consequences of SH_{\aleph_1}: with GCH, see Gregory [3], [4] ($\text{Con}(SH_{\aleph_1}$ and GCH) is open); with just CH, see a forthcoming paper by Stanley and the second author.

REFERENCES

2. K. Devlin, handwritten notes.
8. F. Tall, Some applications of a generalized Martin's axiom.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309
DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL