Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized $ 3$-manifolds whose nonmanifold set has neighborhoods bounded by tori


Author: Matthew G. Brin
Journal: Trans. Amer. Math. Soc. 264 (1981), 539-555
MSC: Primary 57P99; Secondary 57N10
DOI: https://doi.org/10.1090/S0002-9947-1981-0603780-8
MathSciNet review: 603780
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that all compact, ANR, generalized $ 3$-manifolds whose nonmanifold set is 0-dimensional and has a neighborhood system bounded by tori are cell-like images of compact $ 3$-manifolds if and only if the Poincaré conjecture is true. We also discuss to what extent the assumption of the Poincaré conjecture can be replaced by other hypotheses.


References [Enhancements On Off] (What's this?)

  • [1] S. Armentrout, Cellular decompositions of $ 3$-manifolds that yield $ 3$-manifolds, Mem. Amer. Math. Soc. no. 107 (1971). MR 0413104 (54:1225)
  • [2] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 0087090 (19:300f)
  • [3] -, Necessary and sufficient conditions that a $ 3$-manifold be $ {S^3}$, Ann. of Math. (2) 68 (1958), 17-37. MR 0095471 (20:1973)
  • [4] K. Borsuk, Theory of retracts, Monografie Mat., Tom. 44, PWN, Warsaw, 1967. MR 0216473 (35:7306)
  • [5] M. G. Brin, Improving $ 3$-manifold compactifications of open $ 3$-manifolds, Houston J. Math. 4 (1978), 149-163. MR 0494116 (58:13046)
  • [6] J. W. Cannon, The recognition problem: What is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), 832-867. MR 0494113 (58:13043)
  • [7] J. W. Cannon, J. L. Bryant and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, Geometric Topology (Proc. 1977 Georgia Topology Conf.), edited by J. C. Cantrell, Academic Press, New York, 1979, pp. 261-303. MR 537735 (80h:57026)
  • [8] C. H. Edwards, Jr., Open $ 3$-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391-395. MR 0150745 (27:732)
  • [9] W. Haken, Some results on surfaces in $ 3$-manifolds, Studies in Modern Topology, Math. Assoc. Amer., distributed by Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR 0224071 (36:7118)
  • [10] J. M. Kister and D. R. McMillan, Jr., Locally Euclidean factors of $ {E^4}$ which cannot be embedded in $ {E^3}$, Ann. of Math. (2) 76 (1962), 541-546. MR 0144322 (26:1868)
  • [11] T. Knoblauch, Imbedding deleted $ 3$-manifold neighborhoods in $ {E^3}$, Illinois J. Math. 18 (1974), 598-601. MR 0380801 (52:1698)
  • [12] R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731. MR 0251714 (40:4941)
  • [13] -, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 495-553. MR 0645403 (58:31095)
  • [14] D. R. McMillan, Jr., Some contractible open $ 3$-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373-382. MR 0137105 (25:561)
  • [15] -, Strong homotopy equivalence of $ 3$-manifolds, Bull. Amer. Math. Soc. 73 (1967), 718-722. MR 0229243 (37:4817)
  • [16] -, Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942-964. MR 0270380 (42:5269)
  • [17] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 0090053 (19:761a)
  • [18] F. Quinn, Resolutions of homology manifolds, Notices Amer. Math. Soc. 26 (1979), A-130, Abstract #763-57-9.
  • [19] F. Raymond, R. L. Wilder's work on generalized manifolds--an appreciation, Algebraic and Geometric Topology (K. C. Millett, Ed.), Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York, 1978, pp. 7-32. MR 518402 (80h:01023)
  • [20] R. Sternfeld, A contractible open $ n$-manifold that embeds in no compact $ n$-manifold, Ph.D. Thesis, Univ. Wisconsin, Madison, 1977.
  • [21] J. Vrabec, Submanifolds of acyclic $ 3$-manifolds, Pacific J. Math. 49 (1973), 243-263. MR 0350742 (50:3234)
  • [22] F. Waldhausen, Irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [23] A. Wright and R. Messer, Embedding open $ 3$-manifolds in compact $ 3$-manifolds, Pacific J. Math. 82 (1979), 163-177. MR 549841 (80m:57004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57P99, 57N10

Retrieve articles in all journals with MSC: 57P99, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0603780-8
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society