A CORRECTION AND SOME ADDITIONS TO
"REPARAMETRIZATION OF n-FLOWS OF ZERO ENTROPY"
BY
J. FELDMAN AND D. NADLER

Abstract. In addition to correcting an error in the previously mentioned paper, we show that if \(v \rightarrow \psi_v \) and \(w \rightarrow \psi_w \) on \(X \) and \(Y \) are \(n \)- and \(m \)-flows, respectively, then the \((n + m)\)-flow \((v, w) \rightarrow \psi_v \times \psi_w \) on \(X \times Y \) is "loosely Kronecker" if and only if \(\varphi \) and \(\psi \) are.

There is a silly and easily correctable mistake in our paper [4]. Recall that an \(n \)-flow is a free, ergodic, probability-preserving action of \(\mathbb{R}^n \). We constructed in [4] an action \(\varphi \) of \(\mathbb{R}^n \) as follows: \(t \rightarrow T_t \) was defined as a suspension over the non-LB, ergodic, zero-entropy transformation of [2]. Then, for an \((n - 1)\)-vector \(u \), \(\varphi_{(t, u)} \) was defined as \(T_t \times \theta_u \). Although \(\varphi \) is indeed ergodic and probability-preserving, it is not free, so of course it is not an \(n \)-flow.

The purpose of the construction was to produce a zero-entropy \(n \)-flow which is not LK in the sense of [4]. First, we would like to change terminology, and use the term "standard" (as in Katok [5]) rather than "LK". The object, then, is to construct a nonstandard \(n \)-flow of zero entropy. One way would be to fix up the prior example as follows: let the above flow \(T \) act on \((Y, \nu)\), and let \(\theta \) be any \((n - 1)\)-flow on a space \((Z, \rho)\). Then \(\varphi_{(t, u)} = T_t \times \theta_u \) will be a nonstandard \(n \)-flow of zero entropy. That it is nonstandard may be seen as in the argument given at the end of [4] and it is easy to see that it has zero entropy. However, we now give a sketch of a more enlightening approach to the matter.

First, we point out

Lemma 1. A standard \(n \)-flow has entropy zero.

The easiest way to see this is to use the ideas of \(r \)-entropy, from [3]: to say \(\varphi \) is standard is to say that for large \(N \), most \(C_N \) names for \((\varphi, \mathcal{F})\) are \(f_N \)-close. The Lebesgue continuity theorem then may be used to get an exponentially small bound on the number of sets of \(d_N \) diameter \(r \) which are required to cover most of the space on which \(\varphi \) acts.

Hereafter, let \(\psi \) be an \(l \)-flow on \((Y, \nu)\) and \(\theta \) an \(m \)-flow on \((Z, \rho)\). If \(\varphi_{(t, u)} = \psi_t \times \theta_u \), then \(\varphi \) is an \((l + m)\)-flow on \((Y \times Z, \nu \times \rho)\).

Lemma 2. \(\varphi \) as above necessarily has entropy zero.

Indication of Proof. By using partitions of the form \(\mathcal{R} \times \mathbb{S} \) where \(h(\psi, \mathcal{R}) \) and \(h(\theta, \mathbb{S}) \) are finite, we may reduce to the case where \(\psi \) and \(\theta \) have finite

Received by the editors February 11, 1980.
1980 Mathematics Subject Classification. Primary 28D10, 28D15.
entropy. But now the result follows directly from the definition of entropy, essentially because $(l + m)N / N^{l+m} \to 0$ as $N \to \infty$. See [1] for discussions of this type in the discrete case.

Lemma 3. φ as above is standard if and only if both ψ and θ are.

Proof. If both ψ and θ are standard, then for any partition of the form $\mathcal{R} \times \mathcal{S}$, the process $(\psi \times \theta, \mathcal{R} \times \mathcal{S})$ may be seen to be standard by doing f-matching for (ψ, \mathcal{R}) and (θ, \mathcal{S}) separately, and then combining.

To go in the other direction, one may use a similar argument to that at the end of [4] to make a reduction of dimension. Here are the details.

Suppose φ is standard. Choose a partition \mathcal{P} of Y. Then $\mathcal{R} = \{ P \times Z : P \in \mathcal{P} \}$ is a partition of $Y \times Z$. So, referring to the definitions in §3 of [4], we see that for any $\epsilon > 0$ there is some $M > 0$ such that if $M < N$ there is a set $E_N \subset Y \times Z$ with $\nu \times \rho(E_N) > 1 - \epsilon$ and $f^{\mathcal{R}}_N(x, x') < \epsilon$ whenever $x, x' \in E_N$. There is thus some $z \in Z$ so that if we set $F_N = \{ y : (y, z) \in E_N \}$ then $\nu(F_N) > 1 - \epsilon$. Now, if $t \in R^l$ and $u \in R^m$, then $\mathcal{R}(y, z)(t, u) = \mathcal{P}(y)(t)$, independent of z. So $f^{\mathcal{P}}_N((y, t), (y', t')) < \epsilon$ provided $y, y' \in F_N$. So for any such y, y', and any z, z', there is some $h \in D_{C^\infty}$ such that

$$\frac{1}{|C^l_{n+m}|} \int_{C^l_{n+m}} \delta(\mathcal{R}(y, z)(h(t, u)), \mathcal{R}(y', z')(t, u)) \, dt \, du < \epsilon.$$

(Since there are different dimensions to worry about, we now denote the N-cube in R^p by C^p_N.) Rewriting, and writing $h(t, u)$ as $(j(t, u), k(t, u))$, where $j : R^{l+m} \to R^l$ and $k : R^{l+m} \to R^m$, we have

$$\frac{1}{|C^l_N|} \frac{1}{|C^m_N|} \int_{C^l_N} \int_{C^m_N} \delta(\mathcal{P}(y)(j(t, u)), \mathcal{R}(y')(t)) \, dt \, du < \epsilon;$$

so for some u_0 we have

$$\frac{1}{|C^l_N|} \int_{C^l_N} \delta(\mathcal{P}(y)(j(t, u_0)), \mathcal{R}(y')(t)) \, dt < \epsilon.$$

Set $i(t) = j(t, u_0)$. i is a differentiable function from C^l_N to C^l_N leaving fixed a neighborhood of the boundary. Furthermore $\|i' - I_R\|_\infty < \|h' - I_R^{l+m}\|_\infty < \epsilon$. Finally, assuming $\epsilon < 1$, we have $\|i'(y) - I_R^l\| < 1$ for each y, so i is locally invertible (by the Inverse Function Theorem), so--since C^l_N is simply connected--i is globally invertible, i.e. $i \in D_C$. Thus $f^{\mathcal{P}}_N(y, y') < 2\epsilon$ for all $y, y' \in F_N$. But ϵ was arbitrary, so we are done.

It is now easy to produce, for $n > 2$, examples of nonstandard n-flows of zero entropy: just take ψ to be a 1-flow of positive entropy, and θ any $(n - 1)$-flow whatsoever. Then by Lemma 2, φ will have zero entropy. It cannot be standard, because if it were, then by Lemma 3, ψ would also be standard, and therefore by Lemma 1 would have to have entropy zero.

Alternatively, one could, as in [4], take ψ to be some nonstandard 1-flow of zero entropy. Such examples are provided by proving the following fact:

Lemma 4. A flow is standard in the present sense if and only if it is LB in the sense of [2] and of zero entropy, or, equivalently, standard in the sense of [5].
The proof is a fairly routine application of the definitions. This construction is in principle more difficult, in that it already needs the existence of non-LB flows in one dimension. However, it may be useful in constructing uncountably many different equivalence classes.

The first construction, setting \(q_{(t,u)} = \psi_t \times \theta_u \) with \(\psi \) of positive entropy, raises the interesting possibility of exhibiting some "natural" equivalence classes other than the standard class, among the entropy zero \(n \)-flows, \(n \geq 2 \).

References

Department of Mathematics, University of California, Berkeley, California 94720

Department of Mathematics, University of California, Los Angeles, California 90024