Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A correction and some additions to: ``Reparametrization of $ n$-flows of zero entropy'' [Trans. Amer. Math. Soc. 256 (1979), 289-304; MR 81h:28012]


Authors: J. Feldman and D. Nadler
Journal: Trans. Amer. Math. Soc. 264 (1981), 583-585
MSC: Primary 28D10; Secondary 28D20
DOI: https://doi.org/10.1090/S0002-9947-1981-0603784-5
Original Article: Trans. Amer. Math. Soc. 256 (1979), 289-304.
MathSciNet review: 603784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In addition to correcting an error in the previously mentioned paper, we show that if $ \upsilon \mapsto {\varphi _w}$ and $ w \mapsto {\Psi _\sigma }$ on $ X$ and $ Y$ are $ n$- and $ m$-flows, respectively, then the $ (n + m)$-flow $ (\upsilon ,w) \mapsto {\varphi _\upsilon } \times {\Psi _w}$ on $ X \times Y$ is "loosely Kronecker" if and only if $ \varphi $ and $ \Psi $ are.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Conze, Entropie d'un groupe abelien de transformations, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 25 (1972), 11-30. MR 0335754 (49:534)
  • [2] J. Feldman, New $ K$-automorphisms and a problem of Kakutani, Israel J. Math. 24 (1976), 16-37. MR 0409763 (53:13515)
  • [3] -, $ n$-entropy, equipartition, and Ornstein's isomorphism theorem in $ {{\mathbf{R}}^n}$, preprint, Univ. California, Berkeley; Israel J. Math, (to appear).
  • [4] J. Feldman and D. Nadler, Reparametrization of $ n$-flows of zero entropy, Trans. Amer. Math. Soc. 256 (1979), 289-304. MR 546919 (81h:28012)
  • [5] A. Katok, Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR 273 (1975), 789-792. (Russian) MR 0412383 (54:509)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D10, 28D20

Retrieve articles in all journals with MSC: 28D10, 28D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0603784-5
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society