Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Indecomposable representations of semisimple Lie groups


Author: Birgit Speh
Journal: Trans. Amer. Math. Soc. 265 (1981), 1-34
MSC: Primary 22E45; Secondary 20G05
DOI: https://doi.org/10.1090/S0002-9947-1981-0607104-1
MathSciNet review: 607104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a semisimple connected linear Lie group, $ {\pi _1}$ a finite-dimensional irreducible representation of $ G$, $ {\pi _2}$ an infinite-dimensional irreducible representation of $ G$ which has a nontrivial extension with $ {\pi _1}$. We study the category of all Harish-Chandra modules whose composition factors are equivalent to $ {\pi _1}$ and $ {\pi _2}$


References [Enhancements On Off] (What's this?)

  • [1] A. Borel and N. Wallach, Seminar on the cohomology of discrete subgroups of semisimple groups, Institute for Advanced Study, Princeton, N. J., 1976-1977.
  • [2] W. Casselman, The differential equations satisfied by matrix coefficients, manuscript, 1975.
  • [3] V. Dlab and C. Ringel, Indecomposable representations of groups and algebras, Mem. Amer. Math. Soc. No. 173 (1976). MR 0447344 (56:5657)
  • [4] I. M. Gelfand, The cohomology of infinite dimensional Lie algebras; some questions of integral geometry, Proc. Internat. Congr. Math. (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 95-111. MR 0440631 (55:13505)
  • [5] I. M. Gelfand, M. I. Graev and V. A. Ponomarev, The classification of the linear representations of the group $ {\text{SL(2,}}{\mathbf{C}})$, Soviet Math. Dokl. 11 (1970), 1319-1323.
  • [6] I. M. Gelfand and V. A. Ponomarev, The category of Harish-Chandra modules over the Lie algebra of the Lorentz group, Soviet. Math. Dokl. 8 (1967), 1065-1068. MR 0223504 (36:6552)
  • [7] -, Classification of indecomposable infinitesimal representations of the Lorentz group, Soviet. Math. Dokl. 8 (1967), 1114-1117.
  • [8] Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 26-65. MR 0058604 (15:398a)
  • [9] A. W. Knapp and E. M. Stein, Singular integrals and the principal series. IV, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 2459-2461. MR 0376964 (51:13139)
  • [10] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Institute for Advanced Study, Princeton, N. J., mimeographed notes, 1973.
  • [11] D. Milicic, Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), 59-88. MR 0430164 (55:3171)
  • [12] -, Jacquet modules for real groups and Langlands classification of representations, Lecture in Oberwolfach, June 1977.
  • [13] V. Dlab and P. Gabriel, Representations of algebras, Lecture Notes in Math., vol. 488, Springer-Verlag, Berlin and New York, 1975. MR 0382322 (52:3207)
  • [14] G. Schiffman, Integrales d'enterlacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3-72.
  • [15] B. Speh and D. A. Vogan, Reducibility of generalized principal series representations, Acta Math, (to appear). MR 590291 (82c:22018)
  • [16] D. A. Vogan, Irreducible characters of semisimple Lie groups. $ 1$, Duke Math. J. 46 (1979), 61-108. MR 523602 (80g:22016)
  • [17] -, Lie algebra cohomology and the representations of semisimple Lie groups, Thesis, M.I.T., Cambridge, Mass., 1976.
  • [18] G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Arm. of Math. (2) 106 (1977), 295-308. MR 0457636 (56:15841)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 20G05

Retrieve articles in all journals with MSC: 22E45, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0607104-1
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society