Indecomposable representations of semisimple Lie groups

Author:
Birgit Speh

Journal:
Trans. Amer. Math. Soc. **265** (1981), 1-34

MSC:
Primary 22E45; Secondary 20G05

DOI:
https://doi.org/10.1090/S0002-9947-1981-0607104-1

MathSciNet review:
607104

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a semisimple connected linear Lie group, a finite-dimensional irreducible representation of , an infinite-dimensional irreducible representation of which has a nontrivial extension with . We study the category of all Harish-Chandra modules whose composition factors are equivalent to and

**[1]**A. Borel and N. Wallach,*Seminar on the cohomology of discrete subgroups of semisimple groups*, Institute for Advanced Study, Princeton, N. J., 1976-1977.**[2]**W. Casselman,*The differential equations satisfied by matrix coefficients*, manuscript, 1975.**[3]**V. Dlab and C. Ringel,*Indecomposable representations of groups and algebras*, Mem. Amer. Math. Soc. No. 173 (1976). MR**0447344 (56:5657)****[4]**I. M. Gelfand,*The cohomology of infinite dimensional Lie algebras; some questions of integral geometry*, Proc. Internat. Congr. Math. (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 95-111. MR**0440631 (55:13505)****[5]**I. M. Gelfand, M. I. Graev and V. A. Ponomarev,*The classification of the linear representations of the group*, Soviet Math. Dokl.**11**(1970), 1319-1323.**[6]**I. M. Gelfand and V. A. Ponomarev,*The category of Harish-Chandra modules over the Lie algebra of the Lorentz group*, Soviet. Math. Dokl.**8**(1967), 1065-1068. MR**0223504 (36:6552)****[7]**-,*Classification of indecomposable infinitesimal representations of the Lorentz group*, Soviet. Math. Dokl.**8**(1967), 1114-1117.**[8]**Harish-Chandra,*Representations of semisimple Lie groups*. III, Trans. Amer. Math. Soc.**76**(1954), 26-65. MR**0058604 (15:398a)****[9]**A. W. Knapp and E. M. Stein,*Singular integrals and the principal series*. IV, Proc. Nat. Acad. Sci. U.S.A.**72**(1975), 2459-2461. MR**0376964 (51:13139)****[10]**R. P. Langlands,*On the classification of irreducible representations of real algebraic groups*, Institute for Advanced Study, Princeton, N. J., mimeographed notes, 1973.**[11]**D. Milicic,*Asymptotic behaviour of matrix coefficients of the discrete series*, Duke Math. J.**44**(1977), 59-88. MR**0430164 (55:3171)****[12]**-,*Jacquet modules for real groups and Langlands classification of representations*, Lecture in Oberwolfach, June 1977.**[13]**V. Dlab and P. Gabriel,*Representations of algebras*, Lecture Notes in Math., vol. 488, Springer-Verlag, Berlin and New York, 1975. MR**0382322 (52:3207)****[14]**G. Schiffman,*Integrales d'enterlacement et fonctions de Whittaker*, Bull. Soc. Math. France**99**(1971), 3-72.**[15]**B. Speh and D. A. Vogan,*Reducibility of generalized principal series representations*, Acta Math, (to appear). MR**590291 (82c:22018)****[16]**D. A. Vogan,*Irreducible characters of semisimple Lie groups*. , Duke Math. J.**46**(1979), 61-108. MR**523602 (80g:22016)****[17]**-,*Lie algebra cohomology and the representations of semisimple Lie groups*, Thesis, M.I.T., Cambridge, Mass., 1976.**[18]**G. Zuckerman,*Tensor products of finite and infinite dimensional representations of semisimple Lie groups*, Arm. of Math. (2)**106**(1977), 295-308. MR**0457636 (56:15841)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E45,
20G05

Retrieve articles in all journals with MSC: 22E45, 20G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0607104-1

Article copyright:
© Copyright 1981
American Mathematical Society