Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tensor products of principal series for the De Sitter group


Author: Robert P. Martin
Journal: Trans. Amer. Math. Soc. 265 (1981), 121-135
MSC: Primary 22E43; Secondary 22E45, 81C40
DOI: https://doi.org/10.1090/S0002-9947-1981-0607111-9
MathSciNet review: 607111
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The decomposition of the tensor product of two principal series representations is determined for the simply connected double covering, $ G = {\text{Spin}}(4,1)$, of the DeSitter group. The main result is that this decomposition consists of two pieces, $ {T_c}$ and $ {T_d}$, where $ {T_c}$ is a continuous direct sum with respect to Plancherel measure on $ \hat G$ of representations from the principal series only and $ {T_d}$ is a discrete sum of representations from the discrete series of $ G$. The multiplicities of representations occurring in $ {T_c}$ and $ {T_d}$ are all finite.


References [Enhancements On Off] (What's this?)

  • [1] N. Anh, Restriction of the principal series of $ {\text{SL}}(n,{\mathbf{C}})$ to some reductive subgroups, Pacific. J. Math. 38 (1971), 295-313. MR 0327980 (48:6322)
  • [2] J. Dixmier, Représentations intégrables du groupe de DeSitter, Bull. Soc. Math. France 89 (1961), 9-41. MR 0140614 (25:4031)
  • [3] V. K. Dobrev et al., Harmonic analysis on the $ n$-dimensional Lorentz group and its application to conformal quantum field theory, Lecture Notes in Physics, vol. 63, Springer-Verlag, Berlin and New York, 1977.
  • [4] A. W. Knapp and E. M. Stein, Intertwining operators for semi-simple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [5] S. Lang, $ {\text{S}}{{\text{L}}_2}({\mathbf{R}})$, Addison-Wesley, Reading, Mass., 1975. MR 0430163 (55:3170)
  • [6] G. Mackey, Induced representations of locally compact groups. II: The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221. MR 0056611 (15:101a)
  • [7] R. Martin, On the decomposition of tensor products of principal series representations for real-rank one semisimple groups, Trans. Amer. Math. Soc. 201 (1975), 177-211. MR 0374341 (51:10541)
  • [8] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisé, Bull. Soc. Math. France 91 (1963), 289-433. MR 0179296 (31:3544)
  • [9] N. J. Vilenkin, Special functions and the theory of group representations, Transl. Math. Mono., vol. 22, Amer. Math. Soc., Providence, R. I., 1968. MR 0229863 (37:5429)
  • [10] G. Warner, Harmonic analysis on semi-simple Lie groups, Vols. 1, 2, Springer-Verlag, Berlin and New York, 1972.
  • [11] F. Williams, Tensor products of principal series representations, Lecture Notes in Math., vol. 358, Springer-Verlag, Berlin and New York, 1973. MR 0349903 (50:2396)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E43, 22E45, 81C40

Retrieve articles in all journals with MSC: 22E43, 22E45, 81C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0607111-9
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society