Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Genealogy of periodic points of maps of the interval


Author: Robert L. Devaney
Journal: Trans. Amer. Math. Soc. 265 (1981), 137-146
MSC: Primary 58F20; Secondary 28D99, 58F14
DOI: https://doi.org/10.1090/S0002-9947-1981-0607112-0
MathSciNet review: 607112
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the behavior of families of periodic points in one parameter families of maps of the interval which feature a transition from simple dynamics with finitely many periodic points to chaotic mappings. In particular, we give topological criteria for the appearance and disappearance of these families. Our results apply specifically to quadratic maps of the form $ {F_\mu }(x) = \mu x(1 - x)$.


References [Enhancements On Off] (What's this?)

  • [1] R. Devaney and Z. Nitecki, Shift automorphisms in the Hénon mapping, Comm. Math. Phys. 67 (1979), 137-146. MR 539548 (80f:58035)
  • [2] J. Guckenheimer, On the bifurcation of maps of the interval, Invent. Math. 39 (1977), 165-178. MR 0438399 (55:11312)
  • [3] -, The bifurcation of quadradic functions, Bifurcation Theory and Applications in Scientific Disciplines, Ann. N. Y. Acad. Sci. 316 (1979), 78-85.
  • [4] -, Bifurcations of dynamical systems, Dynamical Systems, Birkhäuser, Boston, Mass., 1980, pp. 115-232. MR 589591 (82g:58065)
  • [5] L. Jonker, Periodic orbits and kneading invariants, Bull. London Math. Soc. (to appear). MR 550078 (81g:58029)
  • [6] J. Milnor and W. Thurston, On iterated maps of the interval. I, II (to appear). MR 970571 (90a:58083)
  • [7] J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies, no. 77, Princeton Univ. Press, Princeton, N. J., 1973. MR 0442980 (56:1355)
  • [8] Z. Nitecki, Differentiablle dynamics, MIT Press, Cambridge, Mass., 1971. MR 0649788 (58:31210)
  • [9] S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965. MR 0182020 (31:6244)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20, 28D99, 58F14

Retrieve articles in all journals with MSC: 58F20, 28D99, 58F14


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0607112-0
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society