Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A class of extremal functions for the Fourier transform


Authors: S. W. Graham and Jeffrey D. Vaaler
Journal: Trans. Amer. Math. Soc. 265 (1981), 283-302
MSC: Primary 42A38; Secondary 10H30
DOI: https://doi.org/10.1090/S0002-9947-1981-0607121-1
MathSciNet review: 607121
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine a class of real valued, integrable functions $ f(x)$ and corresponding functions $ {M_f}(x)$ such that $ f(x) \leqslant {M_f}(x)$ for all $ x$, the Fourier transform $ {\hat M_f}(t)$ is zero when $ \left\vert t \right\vert \geqslant 1$, and the value of $ {\hat M_f}(0)$ is minimized. Several applications of these functions to number theory and analysis are given.


References [Enhancements On Off] (What's this?)

  • [1] K. Chandresekharan, Introduction to analytic number theory, Springer, Berlin, 1968.
  • [2] H. G. Diamond, Changes of sign of $ \pi (x) - li(x)$, Enseignement Math., Tome XXI, Fasc. 1, 1975. MR 0376566 (51:12741)
  • [3] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press, London, 1974. MR 0424730 (54:12689)
  • [4] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., vol. 227, Springer, Berlin, 1971. MR 0337847 (49:2616)
  • [5] -, Analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), 547-567. MR 0466048 (57:5931)
  • [6] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-81. MR 0337775 (49:2544)
  • [7] Y. Motohashi, Primes in arithmetic progressions, Invent. Math. 44 (1978), 163-178. MR 0472739 (57:12429b)
  • [8] A. Selberg, Remarks on sieves, Proc. 1972 Number Theory Conf., University of Colorado, Boulder, 1972, pp. 205-216. MR 0389802 (52:10632)
  • [9] -, Multiplicative functions, Number Theory Day 1976, Lecture Notes in Math., vol. 626, Springer, Berlin, 1977, pp. 232-241. MR 0485750 (58:5562)
  • [10] N. Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press, 1933. MR 983891 (90b:42022)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A38, 10H30

Retrieve articles in all journals with MSC: 42A38, 10H30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0607121-1
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society