CHARACTERIZATIONS OF THE FISCHER GROUPS. I, II, III

BY

DAVID PARROTT

ABSTRACT. B. Fischer, in his work on finite groups which contain a conjugacy class of 3-transpositions, discovered three new sporadic finite simple groups, usually denoted $M(22)$, $M(23)$ and $M(24)$. In Part I two of these groups, $M(22)$ and $M(23)$, are characterized by the structure of the centralizer of a central involution. In addition, the simple groups $U_6(2)$ (often denoted by $M(21)$) and $PSp(7, 3)$, both of which are closely connected with Fischer’s groups, are characterized by the same method.

The largest of the three Fischer groups $M(24)$ is not simple but contains a simple subgroup $M(24)'$ of index two. In Part II we give a similar characterization by the centralizer of a central involution of $M(24)$ and also a partial characterization of the simple group $M(24)'$.

The purpose of Part III is to complete the characterization of $M(24)'$ by showing that our abstract group G is isomorphic to $M(24)'$. We first prove that G contains a subgroup $X = M(23)$ and then we construct a graph (on the cosets of X) which is shown to be isomorphic to the graph for $M(24)$.

PART I

The results proved are:

Theorem A. Let G be a finite group, z an involution in G and $H = C_G(z)$. Suppose $J = O_2(H)$ is extra-special of order 2^9 and $C_H(J) \subseteq J$. Then

(i) if $H/J \cong PSp_4(3)$, $G \cong U_6(2)$ or $G = H \cdot O(G)$;

(ii) if $H/J \cong \text{Aut} PSp_4(3)$, G contains a subgroup G_0 of index two, $G_0 \cong U_6(2)$ and $G \subseteq \text{Aut} G_0$ or $G = H \cdot O(G)$.

Theorem B. Let G be a finite group, z an involution in G and $H = C_G(z)$. Suppose that $J = O_2(H)$ is the direct product of a group of order two with an extra-special group of order 2^9 and that $J' = \langle z \rangle$. If $C_H(J) \subseteq J$ and $H/J \cong \text{Aut} PSp_4(3)$, then one of the following holds:

(i) $G = H \cdot O(G)$;

(ii) there is an involution $z_1 \in Z(J) - \langle z \rangle$ with $\langle z_1 \rangle \vartriangleleft G$, G contains a subgroup G_0 of index two with $G_0/\langle z_1 \rangle \cong U_6(2)$ and $G \subseteq \text{Aut} G_0$;

(iii) $G \cong M(22)$.

Theorem C. Let G be a finite group which possesses an involution z such that $H = C_G(z)$ satisfies:

(i) $J = O_2(H)$ is the direct product of a four group and an extra-special group of order 2^9, and $C_H(J) \subseteq J$;

Received by the editors January 13, 1977.

AMS (MOS) subject classifications (1970). Primary 20D05.
(ii) H contains an element c of order three with $H/J \langle c \rangle \cong \operatorname{Aut} \operatorname{PSp}_4(3)$ and $C_H(c)/\langle c, z \rangle \cong \operatorname{PSp}_4(3)$.

Then either $G = H \cdot O(G)$ or $G \cong M(23)$ or G contains a normal four group $\langle z_1, z_2 \rangle$ with $G/\langle z_1, z_2 \rangle \cong \operatorname{Aut} \operatorname{U}_6(2)$.

Previously, D. Hunt [11], [12] has characterized the groups $M(22)$ and $M(23)$ by the centralizer of an involution which is a 3-transposition. The proofs of Theorems B and C rely on his results as well as Theorem A. In Part II these results are used by the author to give a characterization of the larger group $M(24)$.

By using some of the lemmas in the proofs of Theorems B and C we are able to give a characterization of the simple group $P\Omega(7, 3) = B_3(3)$. (A certain element of order three in $M(23)$ has centralizer isomorphic to $Z_3 \times P\Omega(7, 3)$.)

Theorem D. Let G be a finite group, z an involution in G and suppose $H = C_G(z)$ satisfies:

(i) H contains a normal subgroup $K_1 \ast K_2 \times K_3$ of index four with $K_1 \cong K_2 \cong \operatorname{SL}(2, 3)$ and $K_3 \cong \mathfrak{A}_4$;

(ii) $H = (K_1 \ast K_2 \times K_3) \langle t, u \rangle$ where $\langle t, u \rangle \cong E_4$, $K_1 = K_2$, $[K_3, t] = 1$ and ut acts fixed-point-free on a Sylow 3-subgroup of H.

Then either $G = H \cdot O(G)$; $O_2(K_3) = \langle z_1, z_2 \rangle \triangleleft G$ with $G/\langle z_1, z_2 \rangle \cong Z_3 \cdot \operatorname{Aut} \operatorname{PSp}_4(3)$; or $G \cong P\Omega(7, 3)$.

1. Notation and preliminary results. As far as notation is concerned, we will in general follow Gorenstein [3]. In addition, we will use:

- $X \ast Y$: the central product of the groups X, Y;
- $x \sim_X y$: x is conjugate to y in X;
- $x^X = \{ y^{-1}xy \mid y \in X \}$ = conjugacy class of x in X;
- Z_n, D_n: the cyclic, dihedral groups of order n, respectively;
- E_p^n: the elementary abelian group of order p^n (p prime);
- Q_8: the quaternion group of order 8;
- Σ_n, \mathfrak{A}_n: the symmetric, alternating groups of degree n.

Proposition 1 (Suzuki [3, pp. 328, 105]). If x is an involution in the finite group G and $x \not\in O_2(G)$, then x inverts an element of odd order in $G^\#$.

Proposition 2 (Glauberman [2]). Let x be an involution in a finite group G. If $G \neq C_G(x) \cdot O(G)$ then x is conjugate (in G) to an involution in $C_G(x) - \langle x \rangle$.

Proposition 3 (Thompson [10, Corollary 1]). Let S be a Sylow 2-subgroup of the finite group G, S_0 a maximal subgroup of S and x an involution in $S - S_0$. If x is not conjugate (in G) to any involution in S_0 then G contains a subgroup G_0 of index two with $x \in G - G_0$.

Proposition 4. Let G be a finite group, z an involution in G and $H = C_G(z)$. Suppose that $P \neq 1$ is a p-subgroup of H (p an odd prime) which satisfies (\ast) if $g^{-1}P_g \subseteq H$, $g \in G$, then there exists $h \in H$ so that $g^{-1}P_g = h^{-1}P_h$.

1 In the case $G = O^2(G)$, Theorem D is a special case of a result of Olsson [21] and Solomon [22].
Then for any involution $t \in C_H(P)$, $t \sim_G z$ if and only if $t \sim_{N(P)} z$. If, in addition, $N_G(P) = N_H(P) \cdot C_G(P)$ then $t \sim_G z$ if and only if $t \sim_C(P) z$.

Proposition 5. Let H be a finite group with $J = O_2(H)$ extra-special (i.e. $J \cong D_8 \ast \ldots \ast D_8$ or $D_8 \ast \ldots \ast D_8 \ast Q_8$). If $P \neq 1$ is a p-subgroup of H (p an odd prime) then each of $C_J(P)$, $[P, J]$ is extra-special or equal to $Z(J)$.

Proof. This follows immediately from $C_J(P)[P, J] = J$ [3, Theorem 5.3.5] and the Three Subgroups Lemma [3, Theorem 2.2.3].

The next result is certainly a consequence of Gorenstein and Harada's main theorem [6]. However we will give a short proof which essentially relies on the original characterizations of the groups involved.

Proposition 6. Let G be a finite group which contains an involution z. Suppose that $H = C_G(z)$ satisfies:

(i) $O_{2,i}(H) = L_1 \ast L_2$, $L_i \cong SL(2, 3)$, $i = 1, 2$;

(ii) $H/O_{2,i}(H) \cong E_4$;

(iii) $L_i \triangleleft H$, $i = 1, 2$.

Then one of the following holds:

(a) $G = H \cdot O(G)$ or

(b) $G \cong L_4(3)$, $U_4(3)$, Aut $PSp_4(3)$ or Aut $G_2(3)$.

Proof. Let $L_i = \langle \alpha_i, \beta_i, \sigma_i \rangle$ where $\langle \alpha_i, \beta_i \rangle \cong Q_8$ and σ_i is of order three for $i = 1, 2$, and let $V = \langle u, v, z \rangle$ be a Sylow 2-subgroup of $N_H(\langle \sigma_1, \sigma_2 \rangle)$. Note that $V \cdot L_1 \cdot L_2 = H$ and $V \cap O_2(H) = \langle z \rangle$. From the assumptions listed above we can choose the generators of H in such a way that the following relations hold:

\[
\begin{align*}
\sigma_i^w &= \sigma_2, & \alpha_i^w &= \alpha_2, & \beta_i^w &= \beta_2; \\
\sigma_i^v &= \sigma_i^{-1}, & \alpha_i^v &= \alpha_i^{-1}, & \beta_i^v &= \alpha_i \beta_i, & i = 1, 2.
\end{align*}
\]

Suppose now that (a) does not hold. By Proposition 2, $z \sim_G h$ for some $h \in H - \langle z \rangle$. As $O_2(H) - \langle z \rangle$ has only one class of involutions in H with representative $\alpha_1 \alpha_2$ say, and as $C(\alpha_1 \alpha_2) \cap O_2(H) \cong Z_2 \times D_8$, Sylow's theorem yields that $z \sim_G h$, for some $h \in H - O_2(H)$. Thus there are involutions in $V - \langle z \rangle$ by Proposition 1 so $V \cong E_8$, D_8 or $Z_4 \times Z_2$.

We first consider the case when G does not contain a subgroup of index two.

If $V \cong E_8$ then $G \cong L_4(3)$ by Phan's result [17]. In this case G has two classes of involutions with $z \sim_G v \sim_G u \sim_G uv$ say and $\alpha_1 \alpha_2 \sim_G uz \sim_G uvz \sim_G z$.

If $V \cong D_8$ and v is of order four then $G \cong U_4(3)$ by another result of Phan [18].

We note that $U_4(3)$ has only one class of involutions. Suppose that $V \cong D_8$ and $v^2 = 1$. Without loss we take $(uv)^2 = z$. As $O_2(C_H(v)) = \langle v, \alpha_1 \alpha_2, z \rangle$, $z \sim_G v$ forces $z \sim_G \alpha_1 \alpha_2$, since all involutions in $vO_2(H)$ are conjugate in H. Let $S = \langle u, \alpha_1 \alpha_2, \beta_1 \beta_2, z \rangle$, a Sylow 2-subgroup of $C_H(u)$. Clearly S is the unique (normal) elementary abelian subgroup of order 16 in $V \cdot O_2(H)$, a Sylow 2-subgroup of H (and hence of G). Since $N_H(S)/S \cong \Sigma_4$, $C_G(S) = S$ and z is conjugate to an involution in $S - \langle z \rangle$ in G, we have $N_G(S)/S \cong L_2(7)$ or \mathbb{G}_8. In either case $z \sim_G \alpha_1 \alpha_2$ and $vS \sim_{N(E)} \alpha_1 \beta_2 S$ so that $z \sim_G v$ also. Finally, Proposition 3 yields
$z \sim_G u \sim_G uz$ and G has one class of involutions. As $C_H(\sigma_1)$, $C_H(\sigma_1\sigma_2^{-1})$ and $C_H(\sigma_2)$ have quaternion, cyclic and elementary abelian Sylow 2-subgroups, respectively, it follows that $\langle \sigma_1 \rangle \sim_G \langle \sigma_1, \sigma_2 \rangle \sim_G \langle \sigma_1, \sigma_2^{-1} \rangle$. Proposition 4 now yields that $z \sim_{G(\sigma_1\sigma_2)} u$. We have $C_H(\sigma_1/\sigma_2) \langle \sigma_1, \sigma_2 \rangle \approx D_{12}$ whence Gorenstein and Walter's result [3, Theorem 15.2.1] gives $G(\sigma_1/\sigma_2) \langle \sigma_1, \sigma_2 \rangle \approx L_2(11)$ or $L_2(13)$. It follows that either $5 \mid |G(v)|$ or $7 \mid |G(v)|$ as $v \in N_H(\langle \sigma_1, \sigma_2 \rangle)$. This contradicts $|G(v)| = |H|$, so this case cannot occur.

In the case when $V = \mathbb{Z}_4 \times \mathbb{Z}_2$ we show that G has a subgroup of index two. If $v^2 = 1$ then $\langle v, O_2(H) \rangle$ contains two classes of elements of order four in H, with representatives $\alpha_1, \nu \alpha_1 \alpha_2$. Obviously $u \sim_G \alpha_1$, and as $C_H(u)$ has Sylow 2-subgroup isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ while $C_H(\alpha_1, \alpha_2) \approx \mathbb{Z}_4 \times \mathbb{Z}_4$, $u \sim_G \alpha_1 \alpha_2$ either. By Harada's transfer lemma [10], G has a subgroup of index two. If $u^2 = 1$, $\langle u \rangle \cdot O_2(H)$ has two classes of elements of order four in H with representatives $\alpha_1, \nu \alpha_1$. Obviously $v \sim_G \alpha_1$ and as $C_H(v) \approx \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ while $C_H(\nu \alpha_1) \approx \mathbb{Z}_4 \times \mathbb{Z}_4$, we also have $v \sim_G \nu \alpha_1$. Harada's lemma again yields that G has a subgroup of index two. (Clearly, when $(\nu u)^2 = 1$, an identical argument gives the same result.)

Finally we consider the case when G has a subgroup G_0 of index two. Without loss we may assume $G_0 \cap H = \langle u \rangle O_2(H)$ or $\langle v \rangle O_2(H)$. In the first case, $G_0 \cong PSp_4(3)$ by Janko [14], and in the second case $G_0 \cong G_2(3)$ by another result of Janko [15]. It follows that $G \cong \text{Aut} PSp_4(3)$, in which case $V \cong E_6$, or $G \cong \text{Aut} G_2(3)$ (and $V \cong D_8$).

We conclude this section by listing various properties of the groups $PSp_4(3)$ and $\text{Aut} PSp_4(3)$ which will be needed in the proofs of the theorems.

Some properties of $PSp_4(3)$. The group $PSp_4(3)$ is a simple group of order $2^6 \cdot 3^4 \cdot 5$. A Sylow 2-subgroup of $PSp_4(3)$ has centre of order two, and if t is an involution in the centre of a Sylow 2-subgroup, $C(t) = L_1 \cdot L_2\langle u \rangle$, where $u^2 = 1$, $L_1 \cong \text{SL}(2, 3)$ and $L_2 \cong L_2(2, 3)$. If we take $L_i = \langle \alpha_i, \beta_i, \sigma_i \rangle$ (as above) we have the following relations for $C(t)$: $\alpha_i^u = \alpha_i, \alpha_i^u = \alpha_i, \beta_i^u = \beta_i$.

Note that $O_2(C(t)) = \langle \alpha_i, \beta_i \mid i = 1, 2 \rangle \cong Q_8 \cdot Q_8$ has one noncentral class of involutions in $C(t)$ with representative $\alpha_i \beta_i$ say.

In $PSp_4(3)$ there are two classes of involutions with representatives t, ut where $t \sim u$ and $ut \sim \alpha_1 \alpha_2$ (the coset $uO_2(C(t))$ contains two classes of involutions in $C(t)$ with representatives u, ut). The Sylow 2-subgroup $\langle u, O_2(C(t)) \rangle$ contains precisely one elementary abelian subgroup of order 16, namely $S = \langle u, \alpha_1 \alpha_2, \beta_1 \beta_2, t \rangle$. We note that $C(S) = S$, $N(S)/S \cong \mathbb{Z}_4$ and that $C(u t) \subset N(S)$ is isomorphic to the centralizer of a noncentral involution in \mathbb{Z}_8.

We have $\langle \sigma_1, \sigma_2 \rangle$ is a Sylow 3-subgroup of $C(t)$ and $C(\langle \sigma_1, \sigma_2 \rangle) = M(\langle t \rangle)$ where M is elementary of order 27, and $N(M)/M \cong \Sigma_4$. Let $\langle u, t, \beta \rangle$ be a Sylow 2-subgroup of $N(M)$ with $\langle u, t, \beta \rangle \subset N(\langle \sigma_1, \sigma_2 \rangle)$ and $Z(\langle u, t, \beta \rangle) = \langle \nu \rangle$. $PSp_4(3)$ has four classes of elements of order three; $\langle \sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1} \rangle$, and two classes of elements of order nine with cube conjugate to σ_1 or σ_1^{-1}. Further, $C(\sigma_1 \sigma_2^{-1}) = M(\langle t \rangle)$ and $N(\langle \sigma_1, \sigma_2^{-1} \rangle) = M(\langle u, t \rangle)$; $C(\sigma_1 \sigma_2) = M(\langle u, t \rangle)$, $N(\langle \sigma_1, \sigma_2 \rangle) = M(\langle u, t, \beta \rangle)$; $C(\sigma_1) = N(\langle \sigma_1 \rangle)$ is a split extension of a nonabelian group $O_2(C(\sigma_1))$ of order 27 and of exponent three, by $L_2(2, 3)$. If $x \in O_2(C(\sigma_i)) \approx \langle \sigma_1 \rangle$ then $x \sim \sigma_1 \sigma_2^{-1}$. A Sylow 3-subgroup of $PSp_4(3)$ is isomorphic to $Z_3 \vee Z_3$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The subgroup $C(\sigma_1)$ is maximal in $PSp_4(3)$ and $O_{3,2}(C(\sigma_1))$ lies in precisely one maximal subgroup of $PSp_4(3)$, namely $C(\sigma_1)$.

Finally, if B is a Sylow 5-subgroup of $PSp_4(3)$ then $N(B)$ is a Frobenius group of order 20.

Some properties of $Aut PSp_4(3)$. It is well known that $Aut PSp_4(3)$ contains a subgroup of index two isomorphic to $PSp_4(3)$. Put $Aut PSp_4(3) = PSp_4(3)\langle v \rangle$ where v is an involution and $v \in C(t)$. We may choose v so that we have the following relations for $C(t)$:

$$[u, v] = 1, \quad \sigma_i^v = \sigma_i^{-1}, \quad \alpha_i^v = \alpha_i^{-1}, \quad \beta_i^v = \alpha_i \beta_i \quad (i = 1, 2).$$

The Sylow 2-subgroup $\langle u, v, O_2(C(t)) \rangle$ now contains four elementary abelian subgroups of order 16: $\langle u, v, t, a_1^{a_2} \rangle \sim \langle v a_1, u \beta_1 \beta_2, t, a_1 a_2 \rangle$, and $\langle u w, a_1 a_2, a_1 \beta_1 \beta_2, t, \rangle$, S which are both normal. In $Aut PSp_4(3)$, $N(S)/S \approx \Sigma_5$. Further, $C(v) \approx Z_2 \times Z_2 \times \Sigma_4$, and, taking $v \sim w t$, $C(u w) \approx Z_2 \times \Sigma_6$. (In $C(t)$, $v O_2(C(t))$ contains one class of involutions, and $u v O_2(C(t))$ has two classes with representatives $u w, u t$.)

From the relations in $C(t)$ we see that σ_1, σ_1^{-1} are conjugate in $Aut PSp_4(3)$ and so $N(\langle \sigma_1 \rangle) = C(\sigma_1)\langle v \rangle$, $C(\sigma_1)$ clearly being the same as in $PSp_4(3)$. Also we have $C(\sigma_2) = M\langle t, u \rangle$ and $N(\langle \sigma_2 \rangle) = M\langle t, u, v \rangle$ while $C(\sigma_1) = M\langle t, u, v \beta \rangle$ and $N(\langle \sigma_1 \sigma_2 \rangle) = M\langle u \rangle \times \langle t, u, v \rangle$. Note that $N(M)/M \approx Z_2 \times \Sigma_4$ and $C(\sigma_2)/M \approx D_8$. (Most of the properties of $PSp_4(3)$ listed above may be found in Janko [14].)

For the remainder of Part I we will adopt the following notation: if x was used to denote an element of $PSp_4(3)$ or $Aut PSp_4(3)$ above then x will denote an element of H such that $x J$ satisfies the same properties in H/J as x did in $Aut PSp_4(3)$. In addition t will belong to $C_H(\langle \sigma_1, \sigma_2 \rangle) (\langle \sigma_1, \sigma_2 \rangle = E_9)$, u, v will normalize $\langle \sigma_1, \sigma_2 \rangle$, but we do not know if t is an involution in H or if $[u, t] = 1$. (We only have $t^2, [u, t] \in J$.)

2. A nonsimple case in Theorems A, B.

Theorem 1. Suppose that G, H, z satisfy the hypotheses of Theorems A or B. If, in addition, we have $C_j(\sigma_1) = C_j(\sigma_2)$ then $G = H : O(G)$.

The proof will be given in a series of lemmas which, taken together, will yield $z \sim _G h$ for any involution $h \in H - \langle z \rangle$. The theorem then follows immediately from Proposition 2. Much of the proof is independent of the different assumptions about H. However it will be necessary at times to refer to the three possibilities:

Case (i): $H/J \cong PSp_4(3)$, $Z(J) = \langle z \rangle$;

Case (ii): $H/J \cong Aut PSp_4(3)$, $Z(J) = \langle z \rangle$;

Case (iii): $H/J \cong Aut PSp_4(3)$, $Z(J) = \langle z, z_1 \rangle \cong E_4$.

As H contains an element y with $y^3 = \sigma_1$, Proposition 5 yields $[\sigma_1, J] \cong Q_8 \ast Q_8 \ast Q_8$ and $J_0 = C_j(\sigma_1) = Z(J) \ast D$ where $D \cong D_8$ or Q_8. We suppose that $J_0 = C_j(\sigma_2)$ also. Since $\langle J, N_H(\langle \sigma_1 \rangle) \rangle, C_j(\sigma_2) = H$ (see §1) it follows that $J_0 \leq H$. Note that if U is a Sylow 3-subgroup of $O_{2,3}(C_H(\sigma_1))$ then $U - \langle \sigma_1 \rangle$ only contains conjugates of σ_1^{-1}. It follows therefore that $C_j(\sigma_1^{-1}) \cap [\sigma_1, J] \cong Q_8$. Thus
$C_J(\sigma_1 \sigma_2) \cap [\sigma_1, J] \cong Q_8 \rtimes Q_8$ and $O_{2,3}(C_H(\sigma_1 \sigma_2)) \cap C(J_0) = \langle \sigma_1 \sigma_2 \rangle \times Z(J) \rtimes L_3 \rtimes L_4$ where $L_3 \cong L_4 = \text{SL}(2, 3)$. This yields that J_1 contains one class of involutions in H in cases (i), (ii) and two classes in case (iii) (with representatives $j_1, j_2, j_1 \in [\sigma_1, J]$). In particular any involution in J is conjugate to an involution in $C_J(B)$ ($C_J(B) \cap [\sigma_1, J] \cong D_8$).

Lemma 1.1. We have $z \sim_G j$ for any involution $j \in J - \langle z \rangle$.

Proof. Since $|H : C_H(Z(J))| < 2$, $O_2(C_G(Z(J))) = J$. whence $N_H(Z(J)) = N_G(Z(J))$. It follows that $z^G \cap Z(J) = \{z\}$ and that a Sylow 2-subgroup of H is a Sylow 2-subgroup of G. Let j be any involution in $J - J_1$, with K a Sylow 2-subgroup of $C_H(j)$. By Lemma 6 of [16] we have $O_1(Z(K)) \subseteq \langle j, Z(J) \rangle$. Clearly $[H, H'] \cap J \subseteq J$, which means $[K, K'] \cap O_1(Z(K)) \subseteq Z(J)$. On the other hand, $K' \cap J \not\subseteq Z(K)$ so $\langle z \rangle \subset [K, K']$. It follows that $\langle z \rangle \subset N_G(K)$ whence K is a Sylow 2-subgroup of $C_G(j)$; i.e. $z \sim_G j$.

Now let $j \in J_1 - Z(J)$ with $z \sim_G j$. From our remarks above we may suppose $j \in C_J(B)$ whence Proposition 4 implies $z \sim j$ in $C_G(B)$. Let L be a Sylow 2-subgroup of $C(j) \cap C_H(B)$. Since $|L : C_J(j) \cap L| < 2$, Proposition 7 of [16] yields that we must be in cases (ii) or (iii) with $L \cap J \cong Z_2 \times D_8$ or $Z_2 \times Z_3 \times D_9$, respectively. In addition, $L - J$ must contain involutions. However, an involution $x \in C_J(B) - C_J(J_1)$ must centralize $[B, j_1] \cong D_8 \times Q_8$. As $[x, j_1] \neq 1$, x acts as an outer automorphism on $C(B) \cap [\sigma_1, J]$ ($\cong D_8$) whence $C(x) \cap C_J(B) = Z(J)$.

It follows that $z \sim_G j$ and the lemma is proved.

Let T_i, $i = 1, 2, 3$, denote Sylow 2-subgroups of $C_H(\sigma_1)$, $C_H(\sigma_1 \sigma_2^{-1})$, $C_H(\sigma_1 \sigma_2)$, respectively. As $T_1 \cap J = J_0$ and $C_G(J_0)$ covers $T_1 / J_0 (\cong Q_8)$, we must have $T_1 = J_0 \times T_1^*$, $T_1^* \cong Q_8 \times Q_8$ has trivial multiplier [13, p. 643]); without loss we take $\langle t \rangle = \Omega_1(T_1^*)$. Clearly $[t, \langle \sigma_1, \sigma_2 \rangle] = 1$ from which it follows that $[t, C_J(\sigma_1 \sigma_2^{-1})] = 1$ and that t interchanges the two quaternion subgroups in $[\sigma_1 \sigma_2^{-1}, J]$. Finally an easy calculation yields that any involution in tJ is conjugate (in H) to an involution in $tC_J(\sigma_1 \sigma_2^{-1})$.

Lemma 1.2. We have $\langle \sigma_1 \rangle \sim_G \langle \sigma_1 \sigma_2^{-1} \rangle \sim_G \langle \sigma_1 \sigma_2 \rangle$.

Proof. From Lemma 1.1 and the fact that $\langle z \rangle \subset T_2 \subset T_2 \cap J$ we see that T_2 is a Sylow 2-subgroup of $C_G(\sigma_1 \sigma_2^{-1})$. As $|T_2| > 2^9$ and $|T_2| < 2^8$, we have $\sigma_1 \sigma_2^{-1} \sim_G \sigma_1 \sigma_2$. If $\langle \sigma_1 \rangle \sim_G \langle \sigma_1 \sigma_2^{-1} \rangle$ then there exists $g \in G - H$ with $T_1^g \subseteq T_2^g$ by Sylow's theorem. However $z \in T_1^g$ implies $z^g \in T_2^g \subset T_2 \cap J$. Thus $z^g = z$ by Lemma 1.1, a contradiction.

Lemma 1.3. For any involution $x \in tJ$ we have $x \sim_G z$.

Proof. Let x be an involution in tJ. By the remarks preceding Lemma 1.2 we may suppose $x \in tC_J(\sigma_1 \sigma_2^{-1})$. Since $[t, C_J(\sigma_1 \sigma_2^{-1})] = 1$, $z \in (C(x) \cap T_2) \cap J$. It follows from Lemma 1.1 that $C(x) \cap T_2$ is a Sylow 2-subgroup of $C(x) \cap C_G(\sigma_1 \sigma_2^{-1})$ and that $z \sim x$ in $C_G(\sigma_1 \sigma_2^{-1})$. Proposition 4 and Lemma 1.2 now yield $z \sim_G x$.

Lemma 1.4. No involution in tJ is conjugate to z in G.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. In the notation of §1 we have $ut \in C_H(\sigma_1 \sigma_2)$ and that ut inverts $\sigma_1 \sigma_2^{-1}$. Thus $C(ut) \cap [u, j] \cong Z_2 \times Q_8$ whence $C_j(x)$ contains a subgroup $K \cong Z_4 \ast Q_8$ for any (involution) $x \in utJ$. If $z \sim_G x$ then $C_G(x)$ contains a 2-subgroup Y with $|Y : X| = 2$, X a Sylow 2-subgroup of $C_H(x)$. Let $y \in Y - X$ and consider $K^y(\subset X)$. Since $z^G \cap J = \{z\}$ (Lemma 1.1), $K^y \cap J = 1$ so $K^y J / J \cong K \cong Z_4 \ast Q_8$. This is a contradiction, however, as $C_H(ut) J / J$ cannot contain a subgroup isomorphic to K (see §1).

We remark that the proof of Theorem 1 is now complete if we are in case (i). For the remaining two lemmas we assume therefore that we are in cases (ii) or (iii).

Lemma 1.5. If x is an involution in uvJ then $z \sim_G x$.

Proof. As we may assume $uv \in C_H(B)$, $[uv, [B, J]] = 1$ forces $C_j(x)$ to be nonabelian for any (involution) x in uvJ. Hence if X is a Sylow 2-subgroup of $C_H(x)$, we have $z \in X'$. Since $z^G \cap H^* = \{z\}$ by the lemmas already proved, X is a Sylow 2-subgroup of $C_G(x)$ and $x \sim_G z$.

Lemma 1.6. There are no involutions in uvJ conjugate to z in G.

Proof. Suppose x is conjugate to an involution in uvJ. Then $z \sim_G x$ for some involution x in uvJ (see §1). From the proof of Lemma 1.5 we see that $C_j(x)$ must be elementary abelian. Hence uvJ has at most two classes of involutions in $\langle uv, J \rangle$ so we may assume $x \in C_H(\sigma_1 \sigma_2^{-1})$. By Lemma 1.2 and Proposition 4 we must have $z \sim x$ in $C_G(\sigma_1 \sigma_2^{-1})$. Now $T_2 = \langle x, t, C_j(\sigma_1 \sigma_2^{-1}) \rangle$ is a Sylow 2-subgroup of $C_H(x)$ and $[t, C_j(\sigma_1 \sigma_2^{-1})] = 1$, $K = C(x) \cap T_2$ must be elementary abelian.

If all involutions in $x C_j(\sigma_1 \sigma_2^{-1})$ are conjugate to x in T_2 then $\langle z^G \cap K \rangle = \langle x, C_j(\sigma_1 \sigma_2^{-1}) \rangle$, whence $\{y | y \in C_j(\sigma_1 \sigma_2^{-1}) \setminus \langle z \rangle\} \leq N(K)$. Thus $\langle z \rangle \leq N(K)$ which implies K is a Sylow 2-subgroup of $C(x) \cap C_G(\sigma_1 \sigma_2^{-1})$ and $x \sim_G z$. It follows therefore that we are in case (iii), $K \cong E_{32}$ and z has 5 conjugates in $N(K) \cap C_G(\sigma_1 \sigma_2^{-1})$. However $C_j(\sigma_1 \sigma_2^{-1}) K / K (\cong E_4)$ is a Sylow 2-subgroup of $N(K)/K$ (of order 20). This contradicts the structure of $GL(5, 2)$ which completes the proof of the lemma.

3. The proof of Theorem A. In this section we will complete the proof of Theorem A by proving the following two results.

Theorem 2. Suppose G satisfies the assumptions of Theorem A(i) (i.e. $H / J \cong PSp_4(3)$). If, in addition, $G \neq H \cdot O(G)$ and $C_j(\sigma_1) \neq C_j(\sigma_2)$, then $G \cong U_6(2)$.

Theorem 3. Suppose G satisfies the assumptions of Theorem A(ii) (i.e. $H / J \cong Aut PSp_4(3)$). If, in addition, $G \neq H \cdot O(G)$ and $C_j(\sigma_1) \neq C_j(\sigma_2)$, then G contains a subgroup G_0 of index two, $G_0 \cong U_6(2)$ and $G \subseteq Aut G_0$.

We begin with some remarks on the structure of H which apply to both cases. Since σ_2 acts nontrivially on $C_j(\sigma_1)$, Proposition 5 gives $C_j(\sigma_1) \cong Q_8$ and $J \cong Q_8 \ast Q_8 \ast Q_8 \ast Q_8$ (i.e. J is of type $+$). If $r \in C_j(\sigma_1) - \langle z \rangle$ then r has order four.
and $C_H(r)$ covers $O_{2,3}(C_H(\sigma_1))/C_j(\sigma_1)$, whence $C_H(r) \subset C_H(\sigma_1)J$. Thus r has at least 240 conjugates in H, so all elements of order four in J are conjugate in H. This yields $C_j(B) = \langle z \rangle$.

As any 3-element of $O_{2,3}(C_H(\sigma_1)) - \langle \sigma_1 \rangle$ is conjugate to $\sigma_1 \sigma_2^{-1}$, we have (again using Proposition 5) $J = C_j(\sigma_1) \cdot C_j(\sigma_2) \cdot C_j(\sigma_1 \sigma_2^{-1})$; i.e. $O_{2,3}(C_H(\sigma_1 \sigma_2^{-1})) \cong Z_3 \times SL(2, 3) \times SL(2, 3)$. Finally we see that $C_j(\sigma_1 \sigma_2) = \langle z \rangle$ and that J has only one class of noncentral involutions in H.

Let T_1 be a Sylow 2-subgroup of $C_H(\sigma_1)$. As $T_1 \cap J \cong T_j / T_1 \cap J \cong Q_8$ and $C_H(T_1 \cap J) = \langle t, z \rangle$ so that $[t, \sigma_2] = 1$ also. Let T_2, T_3 be Sylow 2-subgroups of $C_H(\sigma_1, \sigma_2^{-1})$ and $C_H(\sigma_1 \sigma_2)$, respectively, with $t \in T_i, i = 2, 3$. Let M be a Sylow 3-subgroup of $C_H(\langle \sigma_1, \sigma_2 \rangle)$ so that $M \cong E_{29}$ and $C_H(\langle \sigma_1, \sigma_2 \rangle) = M \cdot \langle t, z \rangle$. In the notation of §1 take $\langle u, t, z \rangle$ as a Sylow 2-subgroup of $N_H(\langle \sigma_1, \sigma_2 \rangle)$ in case (i) and $\langle v, u, t, z \rangle$ in case (ii). Without loss, assume that $t \sim_{N(M)} u \sim_{N(M)} u\langle z \rangle$—see §1. Thus $\langle u, t, z \rangle \simeq E_8$ or D_8 depending on whether $(ut)^2 = 1$ or z.

Since $\sigma_1^2 = \sigma_2$ we have $C_j(\sigma_1)^{st} = C_j(\sigma_2)$ and $[C_j(\sigma_1 \sigma_2^{-1}), u] = 1$. Conversely, $[t, C_j(\sigma_1) \cdot C_j(\sigma_2)] = 1$ while t interchanges the two quaternion groups in $C_j(\sigma_1 \sigma_2^{-1})$, so that $C_j(t) = E_4 \times Q_8 \times Q_8$. Thus tJ contains 3 classes of involutions in $\langle t, \sigma_1, \sigma_2, J \rangle$ with representatives t, tz, ij where t, tz each have four conjugates, ij has 72 and j is any involution in $C_j(t) - Z(C_j(t))$. Let $F = C_j(u t) = C_j(u) \cap C_j(t)$ so that $F \cong E_{32}$. Hence utJ contains only 2 classes of elements with square in $\langle z \rangle$; we take ut, utz as representatives of the two classes.

Let T be a Sylow 2-subgroup of H with $T = J \cdot O_2(C_H(\langle t \rangle)) \langle u \rangle$ in case (i) and $T = JO_2(C_H(\langle t \rangle)) \langle u, v \rangle$ in case (ii). Observe that T is also a Sylow 2-subgroup of G because $C_G(J) = Z(J) = \langle z \rangle$. As $\langle u \rangle \cdot \langle \sigma_1, \sigma_2 \rangle$ acts irreducibly on $C_j(t)/Z(C_j(t)) \cong E_{16}$, it follows that $F < T\langle \sigma_1, \sigma_2 \rangle$. Clearly $F \lhd C_H(\sigma_1 \sigma_2^{-1})$ so the structure of $PSp_4(3)$ yields that $N_H(F)/J \cong E_16 \cdot D_8$ (case (i)), $E_16 \cdot \Sigma_3$ (case (ii)). Take $E = C_H(\sigma_1 \sigma_2^{-1})$ and observe $u, t \in E$. Thus E covers $O_2(N_H(F))/J$ which yields $|E| = 2^9$ and $N_H(E)/E \cong N_H(F)/J$. Finally we have $E \cong E_{29}$ if $[u, t] = 1$ or $E \cong E_{16} \times D_8 \times Q_8$ if $[u, t] = z$.

Proof of Theorem 2. This will be carried out in a series of lemmas.

Lemma 2.1. The subgroup $\langle \sigma_1 \sigma_2^{-1} \rangle$ is not conjugate to either $\langle \sigma_1 \rangle$ or $\langle \sigma_1 \sigma_2 \rangle$ in G. Further we have $C_G(\langle \sigma_1 \sigma_2^{-1} \rangle) \langle \sigma_1 \sigma_2^{-1} \rangle \cong PSp_4(3)$ or $C_G(\sigma_1 \sigma_2^{-1}) = O(C_G(\langle \sigma_1 \sigma_2^{-1} \rangle))C_H(\sigma_1 \sigma_2^{-1})$.

Proof. From the remarks above we see that $C_H(\langle \sigma_1 \sigma_2^{-1} \rangle)/\langle \sigma_1 \sigma_2^{-1} \rangle$ is isomorphic to the centralizer of a (central) involution in $PSp_4(3)$. The second statement now follows from Proposition 6. In particular, T_2 is a Sylow 2-subgroup of $C_H(\sigma_1 \sigma_2^{-1})$.

Clearly $\langle \sigma_1 \rangle \not\simeq_G \langle \sigma_1 \sigma_2 \rangle$ as $T_1 \cong Q_8 \times Q_8 \not\cong T_2$. If $T_2 \subset T_2$ for some $g \in G$ then $|T_2| = 8$ implies $|C(z) \cap T_2| = 8$. This is not possible in T_2 so we have $\langle \sigma_1, \sigma_2^{-1} \rangle \not\simeq_G \langle \sigma_1, \sigma_2 \rangle$, as required.

Lemma 2.2. For any involution $j \in J - \langle z \rangle$ we have $z \sim_G j$. In addition we may suppose $z \sim_G tz$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let \(j \in T_2 \cap J - \langle z \rangle \) and recall \(t \in T_2 \). By Proposition 4 and Lemma 2.1 we have that \(z \) is conjugate to \(j \), \(t \) or \(tz \) in \(G \) only if it is conjugate in \(C_G(\sigma_1 \sigma_2) \). If \(C_G(\sigma_1 \sigma_2) / \langle \sigma_1 \sigma_2 \rangle \approx \PSp(3) \) then we may assume \(z \sim t \sim j \sim tz \) in \(C_G(\sigma_1 \sigma_2) \) (see §1). In the other case \(\langle z \rangle \) is weakly closed in \(T_2 \) with respect to \(C_G(\sigma_1 \sigma_2) \) and so \(z \) is not conjugate to any of \(j \), \(t \), \(tz \). The proof is completed by recalling that all involutions in \(J - \langle z \rangle \) are conjugate in \(H \).

Lemma 2.3. The subgroup \(E \) is elementary abelian of order \(2^8 \) and is weakly closed in \(T \) with respect to \(G \).

Proof. If \(E \) is not elementary abelian then \([u, t] = z \) whence \(z \sim_G t \). By Proposition 2.2, we may have \(z \sim_G tj_1 \), \(j_1 \) an involution in \(C_j(t) = Z(C_j(t)) \). It follows that \(\langle z^G \cap T \rangle = EJ \). Hence if \(K \) is a Sylow 2-subgroup of \(C_H(tj_1) \) we have \(z \in \langle K \cap Z(G) \rangle \subset J \cap K \); i.e. \(\langle z \rangle \not\sim_G N_G(K) \). Sylow's theorem immediately yields \(z \sim_G tj_1 \) and we have proved that \(E \) is elementary abelian.

Let \(g \in G \) with \(E^g \subset T \). As \(|E^g \cap J| \leq 32 \) and \(|E^g \cdot J / J| < 16 \), we have \(E^g \cap J \approx E_{32} \) and \(E^g \subset EJ \). Thus \(E^g \) contains all \((32) \) involutions in \(uJ \) so \(E^g \cap J = F = C_J(ut) \). It follows immediately that \(E^g = E \) as \(E = C_G(F) \).

Lemma 2.4. The group \(G \) has precisely three classes of involutions; namely we have \(z \sim_G t \), \(j \sim_G tz \), \(ut \) and \(tj \sim_G utz \), where \(j \) is an involution in \(C_j(t) = Z(C_j(t)) \). In addition, \(N_G(E) / E \cong L_3(4) \).

Proof. As all classes of involutions in \(H \) are represented in \(E \), we must have \(z \sim_G e \), \(e \in E - \langle z \rangle \), by Proposition 2.1. It follows from Lemma 2.3 and Sylow's theorem that \(z \sim_{N(E)} e \); i.e. \(N_H(E) \neq N_G(E) \). We will now show \(N_G(E) / E \cong L_3(4) \).

If \(O(N_G(E) / E) \neq 1 \) then there exists a subgroup \(J_1 \) of index two in \(J \) with \(J_1E / E \) centralizing a subgroup of odd order in \(O(N_G(E) / E) \). This is not possible however as \(\langle z \rangle \subset Z(JE) \subset J \cap E \). Hence we have \(O(N_G(E) / E) = 1 \). As \(\sigma_1 \sigma_2 \) acts fixed-point-free on \(JE / E \), \(T / E \) is of type \(L_3(4) \) (see [6, Lemma 2.6, pp. 79–80]). It follows from a result of Gorenstein and Harada [4, Theorem C] that \(N_G(E) / E \) is isomorphic to a subgroup of \(PGL(3, 4) \). Let \(B \) be a Sylow 5-subgroup of \(N_H(E) \). Then \(C_{E}(B) = \langle z \rangle \) which implies that \(N_G(E)' = N_G(E) \). Thus \(N_G(E) / E \cong L_3(4) \) as \(N_G(E) \supset N_H(E) \).

We observe that \(|N_G(E) : N_H(E)| = 21 \) so \(z \) has 21 conjugates in \(E \). Hence \(z \sim_G t \) and \(tz \sim_G j \) by Lemma 2.1. Let \(\langle \sigma, \sigma_1, \sigma_2 \rangle \) be a Sylow 3-subgroup of \(N_G(E) \). Clearly \(z, t, u \) are conjugate under the action of \(\sigma \) on \(C_E(\sigma_1 \sigma_2) = \langle u, t, z \rangle \); it follows therefore that \(tz, uz, ut \) are conjugate under \(\sigma \) and \(C(\sigma) \cap C_E(\sigma_1 \sigma_2) = \langle utz \rangle \). Thus \(j \) has at least 210 conjugates in \(N_G(E) \). Since \(utz, tj \) have 160, 120 conjugates in \(N_H(E) \), respectively, the order of \(L_3(4) \) and the fact that a Sylow 7-normalizer of \(L_3(4) \) is a Frobenius group of order 21 gives \(j \sim_{N(E)} utz \sim_{N(E)} tj \). The lemma follows from the observation once again that two involutions of \(E \) are conjugate in \(G \) if and only if they are conjugate in \(N_G(E) \).

Lemma 2.5. We have \(C_G(tj) \subset N_G(E) \) and \(C_G(tj) / E \cong U_3(2) \cong E_9 \cdot Q_8 \).
Proof. As $|C(t) \cap N(E)/E| = 2^3 \cdot 3^2$ and $N_G(E)/E \cong L_3(4)$, we have $C_G(t) \cap N(E)/E \cong E_3 \cdot Q_8$ (a Sylow 3-normalizer in $L_3(4)$). Let R be a Sylow 2-subgroup of $C(t) \cap N_G(E)$ and V a Sylow 2-subgroup of $N(R) \cap C(t) \cap N_G(E)$. From $V \cap E = \langle t \rangle$ we conclude $V \cong Z_2 \times Q_8$. Since $C(t) = E_3 \times D_8$ there is an involution $j_0 \in C(t) - E$. By Proposition 1 we may assume $j_0 \in V$ (so $\Omega_1(V) = \langle j_0, j \rangle$) and by Sylow's theorem we may assume $V \subset T$.

Let $Y = EV = T \cap C(t) \cap N_G(E)$ and let $X = C_G(j_0)$. As E char Y, Y must be a Sylow 2-subgroup of X. Further, we compute that j_0E contains two classes of involutions in Y with representatives j_0, j_0tj and that $C_E(Y) = \langle t, z \rangle$. Thus $\{z\} = Z^G \cap Z(C_Y(j_0))$ whence Sylow's theorem yields $C_Y(j_0)$ is a Sylow 2-subgroup of $C_Y(j_0)$. In particular no involution in $Y - E$ is conjugate to an involution in E in X. An application of Grün's first theorem [3, Theorem 7.4.2] gives $Y \cap X' \subseteq \Omega_1(Y)$. Hence X contains a normal subgroup X_1 of index four with $X_1 \cap Y = \Omega_1(Y) = \langle E, j_0 \rangle$. Proposition 3 applied to X_1 yields that X_1 has a subgroup of index two which does not contain j_0. It follows that X_1 possesses a subgroup X_2 of index two with $N(E) \cap X_2 = E \cdot R$. We conclude that $N_X(Y) = VC_X(Y)$, which implies $N_X(R) \cap X_2 = C_X(R)$.

If $C_X(R) = R \times \langle t \rangle$, two applications of Burnside's transfer theorem [3, Theorem 7.4.3] yield $X_2 = O(X_2) \cdot E \cdot R$. The lemma will follow if we can show $C_X(r) \subseteq R \cdot E$, $r \in R^\#$, and $O(X) = 1$. To do this, we use the fact that $utz \sim N(t)$ and show $C(s_1s_2) \cap C_G(utz) \subset N_G(E)$ and $O(C_G(utz)) = 1$.

As u, t, z are all conjugate in $C_G(utz) \cap N_G(E)$, each of u, t, z acts fixed-point-free on $O(C_G(utz))$. Thus $O(C_G(utz)) = 1$. Recall that
$$C(s_1s_2) \cap C_H(utz) = \langle s_1s_2, u, t, z \rangle$$
$$= \langle s_1s_2 \rangle \times \langle u, t \rangle \times \langle u, t \rangle \approx Z_3 \times Z_2 \times Z_4.$$
Clearly, $C_G(utz) \cap C_H(utz) = C_H(utz)$, so we conclude that $C(utz) \cap C(s_1s_2) \cap C_G(utz)$ is abelian. A result of Suzuki (see [19]; or see [3, pp. 420–423]) yields $C(s_1s_2) \cap C_G(utz) \approx \tilde{E}_4$ or \hat{E}_5. The second case is not possible as $R \sim N(E) \langle s, s_1s_2 \rangle$ and $N_X(R) = C_X(R) \cdot V$. Thus $C(s_1s_2) \cap C_G(utz) \subset N_G(E)$ as required.

Lemma 2.6. If $W = \langle tz \rangle \times Z(C_T(tz))$ then
$$C_G(W) = O_2(C_H(tz)) \cdot \langle s_1s_2^{-1}, u \rangle,$$
$$N_G(W) = C_G(W) \cdot (N_G(W) \cap C_G(s_1s_2^{-1}))$$
and $N_G(W)/C_G(W) \cong \tilde{E}_4$. Further, we have $C_G(tz) \subset N_G(W)$ so that $C_G(tz) = C_G(W) \langle s_1s_2, l \rangle$ where $\langle s_1s_2, l \rangle \approx \Sigma_3, z^l = t$ and $l \in N_G(E)$.

Proof. We have $W = \langle tz \rangle \times Z(C_T(tz)) \approx E_{16}, W \subseteq E \cap C_H(s_1s_2^{-1})$ and $W \triangleleft C_H(tz)$. By Lemmas 2.1 and 2.4, $C_G(s_1s_2^{-1})/\langle s_1s_2^{-1} \rangle \cong PSp_4(3)$. Since u inverts $s_1s_2^{-1}$ and centralizes a complement to $\langle s_1s_2^{-1} \rangle$ in $C_H(s_1s_2^{-1})$, it follows that $N_G(\langle s_1s_2^{-1} \rangle) = \langle s_1s_2^{-1}, u \rangle \times P$ where $P \cong PSp_4(3)$. Now $N_P(W)/W \cong \hat{E}_5$ (see §1) and as z, tz have precisely 5, 10 conjugates in W, it follows (from the structure of \tilde{E}_4) that $N_G(W) = N_P(W)C_G(W)$. In particular,
$$C_G(W) = O_2(C_H(tz)) \cdot \langle s_1s_2^{-1}, u \rangle \quad (C_H(tz) = C_G(W)\langle s_1s_2 \rangle).$$
Since \(tz \) has 10 conjugates in \(N_p(W) \), \(C_G(tz) \cap N_p(W) = W \langle \sigma_1 \sigma_2, l \rangle \) where \(\langle \sigma_1 \sigma_2, l \rangle \cong S_3 \). Clearly \(l \not\in H \) whence \(z' = t \) as \(H_{\sigma_1 \sigma_2} = \langle t, z \rangle \). Finally \([l, u] = 1 \) so \(l \) normalizes \(O_2(C_H(tz)) \langle u \rangle \supseteq E \) and hence \(l \in N_G(E) \).

It remains to show that \(C_G(tz) \subseteq N_G(W) \). Firstly we note that

\[
C_G(tz) \cap N_G(E) = O_2(C_H(tz)) \cdot \langle \langle u \rangle \times \langle \sigma_1 \sigma_2, l \rangle \rangle \subseteq N_G(W),
\]
as \(tz \) has 210 conjugates in \(E \). Clearly \(L = \langle O_2(C_H(tz)), u, l \rangle \) is a Sylow 2-subgroup of \(C_G(tz) \), \(E \not\subset L \) and \(z \) has only 2 conjugates in \(N(E) \cap C_G(tz) \), namely \(t, z \). As \(z^G \cap L \subseteq E \), Proposition 2 applied to \(C_G(tz)/\langle tz \rangle \) yields

\[
C_G(tz) = O_2(C_G(tz)) \cdot N_G(\langle t, z \rangle).
\]

Since \(tj \sim_G tjz \) and \(C_G(tj) \subseteq N_G(E) \) (Lemma 2.5), each of \(z, tj \) and \(tjz \) must act fixed-point-free on \(O_2(C_G(tz)) \). Thus \(O_2(C_G(tz)) = 1 \) and \(C_G(tz) = N_G(\langle t, z \rangle) \) whence \(C_G(tz) \subseteq N_G(W) \). The lemma is proved.

Lemma 2.7. The order of \(G \) is \(2^{15} \cdot 3^6 \cdot 5 \cdot 7 \cdot 11 \).

Proof. Thompson's order formula and Lemmas 2.4–2.6 give

\[
|G| = 2^{15} \cdot 3^4 \cdot 5 \cdot a(tj) + 2^{13} \cdot 3^2 \cdot a(z) + 2^{13} \cdot 3^4 \cdot 5 \cdot a(tz)
\]

where, for any involution \(g \in G \),

\[
a(g) = |\{(x, y) | (xy)^n = g \text{ for some positive integer } n, \text{ with } x \sim_G z, \ y \sim_G tj\}|.
\]

In the computations for \(a(tj) \) and \(a(tz) \) we will use the notation introduced in Lemmas 2.5 and 2.6. Recall that \(|z^G \cap N_G(E)| = |z^G \cap E| = 21 \) and that \(z^G \cap H = \{z\} \cup \nu \). For the rest of the proof we will assume \(x \sim_G z, y \sim_G tj \).

\[
a(tj) = 9. \text{ Since } [R, E] \times \langle tj \rangle = E, \text{ and } [R, E] \not\subset C_G(tj), \text{ we may assume } e \in E \text{ if } (xy)^n = tj \text{. In } C_G(tj), \ z \text{ has 9 conjugates, while in } C_G(utz), \ z \text{ has 12 conjugates. The result follows because } tjz \sim_G tj \text{ while } ut \sim_G tz.
\]

\[
a(z) = 0. \text{ If } (xy)^n = z \text{ we easily verify that } x \neq z \text{ and if } x = t, \ y \in C_H(t). \text{ Suppose } x = t \text{ and } y \in H - C_H(t). \text{ If } [t, y] \in J, \text{ we only have to consider } y = u_{j2}, j_2 \in C_f(u) - C_f(t). \text{ However } (tu_{j2})^3 = (j_2)^3 \neq z \text{ as } z \not\in [1, J]. \text{ Suppose next that } tJ \sim_H yJ, \text{ so that } (ty)^m \text{ lies in a conjugate of } tJ \text{ or } utJ, \text{ for some } m. \text{ Now } F = \langle z \rangle \times [ut, J] \text{ and } [u, T] \cap J = \emptyset \text{ (see §1) so } (ty)^m J \sim_H tJ \text{ and } (ty)^q \sim_H \sigma_1 \sigma_2^{-1} \text{ for some integer } q. \text{ Similarly if } tJ \sim_H yJ, \text{ the product is conjugate to } \sigma_1 \sigma_2^{-1}. \text{ Finally we check that there are no } x, y \in N_H(\langle \sigma_1 \sigma_2^{-1} \rangle) \text{ with } (xy)^n = z \text{ for any } n.
\]

\[
a(tz) = 2^4 \cdot 3^2 \cdot 19. \text{ Recall that } N_G(\langle \sigma_1 \sigma_2^{-1} \rangle) = \langle \sigma_1 \sigma_2^{-1}, u \rangle \times P, \text{ } P \cong PSp_4(3), \text{ and}
\]

\[
C_G(tz) = O_2(C_H(tz)) \cdot \langle \langle \sigma_1 \sigma_2^{-1}, u \rangle \times \langle \sigma_1 \sigma_2, l \rangle \rangle.
\]

Since \(P \) has two classes of involutions with representatives \(z, tz \), it follows that \(l \sim_G tz \) and \(ul \sim_G utz \sim_G tj \). We put \(D = O_2(C_G(tz)) = O_2(C_H(tz)) \) and compute that \(ul \) has \(2^6 \cdot 3^2 \) conjugates in \(C_G(tz) \) and all involutions in \(ulD \) are conjugate to \(ul \). Further, all involutions in \(lD \) are conjugate to \(l \) while in \(uD, u \) has 16 conjugates,
$u_j (\sim G J)$ has 96 ($j_0 \in Z(C_f(t)))$, $utzt$ has 64 and all other involutions (there are 80) in uD are conjugate to tz in G. (All involutions in uD lie in E.) Finally we have $|z^G \cap D| = 5$ while $|z^G \cap C_G(tz) - D| = |u^{C_{tz}}| = 48.$

Suppose $(xy)^n = tz$ and firstly that $x \in D$. If $x = z$ we get no pairs if $y \in D$ but $2^6 \cdot 3^2$ pairs if $y \sim u$ in $C_G(tz)$. When $x \neq z$ in $C_G(tz)$ we take $x = z$ in $C_G(tz)$ and easily show there are no pairs in this case. Hence there are $2^7 \cdot 3^2$ pairs if $x \in D$.

Now suppose $x = u$ and observe that $u \cdot utzt = tz$ so we get one pair if $y \in C_G(u)$. Since $[\langle u \rangle, D] \subseteq E - tz(E \cap J)$ we get zero pairs if $y \in D$. If $y \in u_1 D$ where $l_1 D \sim lD$ then $(u \cdot u_1 d)^2 = (l_1 d)^2 = [u, d]$ for those $d \in D$ with $ul_1 d$ an involution. There are zero pairs therefore in this case. Next suppose $y \in u_1 l_1 D$, $uD \neq u_1 l_1 D \sim uD,$ $l_1 D \sim lD$ in $C_G(tz)$. Then $(w)^3 \in l_1 D$ and $\langle u, y \rangle D = \langle (u, \sigma_1 \sigma_2^{-1}) \rangle \cdot D$. As $C_G(u) \supseteq C_G(\sigma_1 \sigma_2^{-1}) \cap \langle l_1, D \rangle$, $(u)^3$ is an involution, so we again get zero pairs. Finally if $y \in u_1 D$ for $uD \neq u_1 D \sim uD$ then $\langle u, y \rangle D = \langle \sigma_2^{-1}, u \rangle D$. Since $utzt \sim G J$ the structure of $C(\sigma_1 \sigma_2^{-1}) \cap C_G(tz)$ shows that we get two pairs for each conjugate of $\langle \sigma_1 \sigma_2^{-1} \rangle$ normalized by u. There are 16 such conjugates. We therefore get 48×33 pairs if $x \notin D$. The lemma follows immediately.

Lemma 2.8. There exists $k \in G$ such that $G = H' \cup HlH \cup HkH$ where $|H'| \cap H| = 2^{13} \cdot 3^2$ and $|H^k \cap H| = 2^6 \cdot 3^4 \cdot 5$. Thus G acts as a rank three permutation group on the cosets of H.

Proof. As $H' = C_G(t)$, $H' \cap H = C_H(t)$ whence $|H' \cap H| = 2^{13} \cdot 3^2$. Since $N_G(\langle \sigma_1 \sigma_2^{-1} \rangle) = \langle u, \sigma_1 \sigma_2^{-1} \rangle \times P$, there exists $u_1 \in N_G(\langle \sigma_1 \sigma_2^{-1} \rangle), u_1 \sim G u$ such that

$$C_G(u_1) \cap C_G(u) \cap N(\langle \sigma_1 \sigma_2^{-1} \rangle) = P.$$

Hence there exists $k \in G$ with $C_H(z^k) \cap J = H$, as $u \sim G z$. Finally, as $z^k \notin H$ we have $C_H(z^k) \cap J = 1$; i.e., $C_H(z^k) \cong PSp_3(3)$. The lemma follows from Lemma 2.7.

Lemma 2.9. The group G is simple and is isomorphic to $U_6(2)$.

Proof. From Lemma 2.6, $O(C_G(tz)) = 1$ whence z, t, tz all act fixed-point-free on $O(G)$. It follows that $O(G) = 1$. If $1 \neq N \subseteq G, z \in N$ because $Z(T) = \langle z \rangle$ and $O(G) = 1$. We observe that $\langle z^G \cap H \rangle = H$ so $H \subseteq N$. Thus $N = G$ as $N_G(T) = T (N_G(T) \subseteq H)$, and G is a simple group.

In the notation of Lemma 2.8, we have $(zz^l)^2 = (zl)^2 = 1$ and $(z \cdot z^k)^3 = 1$. (Note that k was chosen in Lemma 2.8 so that

$$N_G(\langle z \rangle) = \langle z \rangle, z^k \rangle \times C_H(z^k) \sim G N_G(\langle \sigma_1 \sigma_2^{-1} \rangle) \cong \Sigma_3 \times PSp_4(3).$$

Thus z^G is a class of 3-transpositions. We conclude that $G \cong U_6(2)$ because of Fischer's result [1].

Proof of Theorem 3. We now suppose G, H, z satisfy the assumptions of Theorem 3. To begin the proof we make some remarks on the structure of H in this case.

Recall that $\langle v, t, u, z \rangle$ is a Sylow 2-subgroup of $N_H(\langle \sigma_1, \sigma_2 \rangle)$, with $\sigma_i^v = \sigma_i^{-1}$, $i = 1, 2$. Take $\langle v, t, u, \beta, z \rangle$ to be a Sylow 2-subgroup of $N_G(M)$, where $\langle t, u, \beta, z \rangle \sim D_8$ and note that $N_H(M)/C_H(M) \cong Z_2 \times \Sigma_4$. As $vJ \sim H$ utzJ
and \(C_M(uv) = \langle \sigma_1 \sigma_2 \rangle \), we have \(C_M(vt) = 1 \) whence \(vt \in C_H(M) \). Since \(v \in N_H(T_1) \) so that \([v, t] = 1\) also (recall \(T_1 \cong Q_8 \times Q_8 \), \(\mathcal{O}_1(T_1) = \langle t, z \rangle \)). It follows immediately that \([\langle vt \rangle, \langle u, t \rangle] = 1\). In addition we will take \(T_2 = \langle vu, t \rangle \cdot C_2(\sigma_1 \sigma_2) \) and \(T_3 = \langle t, u, z, v \beta \rangle \) (note that \(T_3/\langle z \rangle \cong D_8 \)).

Since \(vt \) inverts \(\langle \sigma_1, \sigma_2 \rangle \) and \([vt, u \rangle = 1\), we easily compute \(C_2(vt) = C_2(v) = E_{16} \), \(C_2(vu) = E_{32} \). Further if \(h \in H - H' \) with \(h^2 \in \langle z \rangle \) then \(h \) is conjugate to one of \(v, u, uz \) in \(H \).

Lemma 3.1. The elements \(\sigma_1, \sigma_1 \sigma_2^{-1}, \sigma_1 \sigma_2 \) lie in distinct conjugate classes in \(G \).

Proof. As in the proof of Lemma 2.1, \(T_2 \) is a Sylow 2-subgroup of \(C_G(\sigma_1 \sigma_2) \). If there exists \(g \in G \) with \(T^g \subset T_2 \) then \(z^g \in T^g_2 \subset T_2 \cap J \). However \(\Omega_8(T_1) = \langle t, z \rangle \) while \(C_2(z^g) \cap T_2 = Z_2 \times D_8 \). We conclude that \(\sigma_1 \sim \sigma_1 \sigma_2 \). If \(T^g \subset T_2 \) for some \(g \in G \) then \(|C(z^g) \cap T_2| = 16 \), whence there exists \(h \in H \) with \(h \in C_H(\sigma_1 \sigma_2) \) and \(z^gh = z^gvt \). However \(C(vu) \cap T_2 \) must be abelian in this case as \(z \in \langle t, C_2(\sigma_1 \sigma_2) \rangle \) and \(|C_2(v) \cap T_2| = 4 \). Clearly this contradicts \(T_3/\langle z \rangle \cong D_8 \). It remains to show \(\sigma_1 \sim \sigma_1 \sigma_2 \).

Suppose that \(T_1 \) is not a Sylow 2-subgroup of \(C_G(\sigma_1) \). By Sylow’s theorem there is a subgroup \(T^*_1 \) of \(C_G(\sigma_1) \) with \(|T^*_1 : T_1| = 2 \). It follows that \(T^*_1 \cong Q_8 \) wr \(Z_2 \) and \(\langle z, t \rangle \) char \(T^*_1 \). Thus \(T^*_1 \) is a Sylow 2-subgroup of \(C_G(\sigma_1) \). In either case it is immediate that neither \(T^*_1 \) nor \(T_1 \) contains a subgroup isomorphic to \(T_2 \). We conclude that \(\sigma_1 \sim \sigma_1 \sigma_2 \).

Lemma 3.2. Either \(C_G(\sigma_1 \sigma_2) = Aut \, \text{PSp}_4(3) \) or \(L_4(3) \), or \(C_G(\sigma_1 \sigma_2) = O(C_G(\sigma_1 \sigma_2)) \cdot C_H(\sigma_1 \sigma_2) \). In addition, \(z \sim j \) for any involution \(j \in J - \langle z \rangle \) and we may assume \(z \sim tz \).

Proof. By Proposition 4 and Lemma 3.1, \(z \sim tz \) if and only if \(z \sim tz \) in \(C_G(\sigma_1) \). Recall \(T_1 = T_{11} \times T_{12}, T_{11} \approx T_{12} = Q_8 \) and assume \(T^*_1 = \langle z \rangle, T^*_{12} = \langle t \rangle \). It follows immediately from the last part of the proof of Lemma 3.1 and Burnside’s lemma [3, Theorem 7.1.1] that \(z \sim tz \).

Suppose that \(C_G(\sigma_1 \sigma_2) \neq C_H(\sigma_1 \sigma_2) \). By Proposition 6, \(C_G(\sigma_1 \sigma_2) = L_4(3), U_4(3), Aut \, \text{PSp}_4(3) \) or \(Aut \, \text{G}_2(3) \). Since \(z \sim tz \) and \(U_4(3) \) has one class of involutions, \(U_4(3) \) is not a possibility. We show that \(C_G(\sigma_1 \sigma_2) = \langle \sigma_1 \sigma_2 \rangle \). If \(C_G(\sigma_1 \sigma_2) \approx \langle \sigma_1 \sigma_2 \rangle \) then \(\langle vu, t \rangle \approx D_8 \), hence \(\langle u, t \rangle \approx D_8 \). Let \(K \) be a subgroup of index two in \(C_G(\sigma_1 \sigma_2) \) with \(K/\langle \sigma_1 \sigma_2 \rangle \approx G_2(3) \). Then \(K \cap T_2 = \langle vu, t \rangle \approx \langle \sigma_1 \sigma_2 \rangle \). It follows immediately that \(\sigma_1 \sigma_2 \) inverts \(M, \) a Sylow 3-subgroup of \(C_H(\sigma_1 \sigma_2) \), and \(u \) centralizes a complement to \(\langle \sigma_1 \sigma_2 \rangle \) in \(O_2(3,C_H(\sigma_1 \sigma_2) \langle v \rangle \). The structure of \(G_2(3) \) (see [15]) yields that either \(u \) or \(uz \) centralizes \(C_G(\sigma_1 \sigma_2) \). Hence \(N_G(\langle \sigma_1 \sigma_2 \rangle \langle u \rangle) \cong \Sigma_3 \times G_2(3) \). Hence \(\langle [t, u] = 1 \), a contradiction. The lemma is proved.

Lemma 3.3. The subgroup \(E \) is elementary abelian of order \(2^9 \) and weakly closed in \(T \) with respect to \(G \).
PROOF. If \(C_G(\sigma_1\sigma_2^{-1})/\langle \sigma_1\sigma_2^{-1} \rangle \cong L_4(3) \) or \(\text{Aut } PSp_4(3) \) then \(\langle uu, t, z \rangle \cong E_8 \) and hence \(\langle u, t, z \rangle \cong E_8 \); i.e. \(E \cong E_2 \). For the case when \(\langle z \rangle \) is weakly closed in \(C_H(\sigma_1\sigma_2^{-1}) \) with respect to \(C_G(\sigma_1\sigma_2^{-1}) \), the proof of the first part of Lemma 2.3 may be repeated to yield \(E \cong E_2 \).

In order to prove \(E \) is weakly closed in \(T \), observe that \(E^g \subset T \) (\(g \in G \)) implies \(E^g \cap eJ \neq \emptyset \) for some \(e \in E \) with \(eJ \sim_H uJ \) (see §1 for a list of subgroups of \(\text{Aut } PSp_4(3) \) isomorphic to \(E_{16} \)). As \(C_J(e) = F \) and \(E = C_G(F) \), we have \(E^g = E \) as required.

Lemma 3.4. The subgroup \(N_G(E) \) contains a subgroup \(K \) of index two with \(K/E \cong L_3(4) \) and \(K \cap H = N_G(E) \cap H' \).

Proof. By Lemma 3.2, \(z \sim_G e \) for some \(e \in E - \langle z \rangle \). It follows therefore from Lemma 3.3 that \(z \sim e \) in \(N_G(E) \) whence \(N_G(E) \neq N_H(E) \). If \(N_G(E) \) contains a subgroup \(K \) with \(|N_G(E)/E : K/E| = 2 \) then \(K/E \cap N_H(E)/E \cong E_{16} \delta_3 \) and \(K/E \cong L_3(4) \) as in the proof of Lemma 2.4.

For \(j_1 \in J - E \), \(\langle z \rangle \subset \langle j_1 \rangle \subset J \cap \langle z \rangle \) whence \(C_{N(E)}(j_1) = T^h/E \), \(h \in N_H(E) \). If we assume that \(N_G(E) \) contains no subgroup of index two then \(N_G(E)/E \) is “fusion-simple” (in the sense of [5]). Further, \(T/E \), a Sylow 2-subgroup of \(N_G(E)/E \) is of type \(\tilde{A}_8 \) (see [6, Lemma 2.6, pp. 79–80]). However the conditions contradict a result of Gorenstein and Harada [5, Theorem A]. Thus \(N_G(E)/E \) must possess a subgroup of index two and the lemma is proved.

Lemma 3.5. There are 3 classes of involutions in \(E \) in \(N_G(E) \) with representatives \(z, tz, utz \). These classes are not fused in \(G \). Further, \(C_G(\sigma_1\sigma_2^{-1})/\langle \sigma_1\sigma_2^{-1} \rangle \cong \text{Aut } PSp_4(3) \) and for any involution \(h \in H - H' \), we have \(z \sim_G h \).

Proof. We have \(z \sim t \sim j \sim tz \sim ut \sim utz \sim tj \) in \(N_G(E) \) as in Lemma 2.4 (\(j \) an involution in \(C_J(t) - Z(C_J(t)) \)). Further, these classes are not fused in \(G \) because of Lemma 3.3. As \(z \sim_G t \), Proposition 4 and Lemmas 3.1, 3.2 yield \(C_G(\sigma_1\sigma_2^{-1}) \neq O(C_G(\sigma_1\sigma_2^{-1}))C_H(\sigma_1\sigma_2^{-1}) \).

Suppose that \(C_G(\sigma_1\sigma_2^{-1})/\langle \sigma_1\sigma_2^{-1} \rangle \cong L_4(3) \). Since \(\langle u, z \rangle \) centralizes \(C_H(\sigma_1\sigma_2^{-1})/\langle \sigma_1\sigma_2^{-1} \rangle \), the structure of \(L_4(3) \) (see [17]) and \(u \sim_G z \) yield \(N_G(\langle \sigma_1\sigma_2^{-1} \rangle) = \langle \sigma_1\sigma_2^{-1}, uz \rangle \times L \), \(L \equiv L_4(3) \). However \(t \sim_G z \) forces \(t \cdot uz \sim z \cdot uz = u \) in \(N_G(\langle \sigma_1\sigma_2^{-1} \rangle) \), clearly a contradiction. Thus \(C_G(\sigma_1\sigma_2^{-1})/\langle \sigma_1\sigma_2^{-1} \rangle \cong \text{Aut } PSp_4(3) \) and, as \(z \sim t \) in \(C_G(\langle \sigma_1\sigma_2^{-1} \rangle) \), we have \(z \) is not conjugate to any involution in \(T_2 - \langle t, C_J(\sigma_1\sigma_2^{-1}) \rangle \) in \(C_G(\sigma_1\sigma_2^{-1}) \).

Lemma 3.6. The group \(G \) contains a subgroup \(G_0 \) of index two with \(G_0 \cong U_6(2) \).

Proof. Recall that \(C_J(uv) = E_{32} \) and \(C_H(uv)/ C_J(uv) \cong Z_2 \times S_8 \) (see §1). Let \(Y \) denote a Sylow 2-subgroup of \(C_J(uv) \). Clearly \(\langle z \rangle \subset Z(Y) \subset \langle j, uv \rangle \) whence \(z^G \cap Z(Y) = \{ z \} \) by Lemmas 3.5 and 3.2. Thus \(Y \) is a Sylow 2-subgroup of \(C_J(uv) \), and as \(| Y | = 2^{10} \), \(u \sim_G tz \) and \(uv \sim_G tj \); i.e. \(uv \sim_G x \) for any involution \(x \in H' \). It follows immediately from Proposition 3 that \(G \) contains a subgroup \(G_0 \) of index two with \(uv \in G - G_0 \). Thus \(G_0 \cap H = H' \) whence \(G_0 \cong U_6(2) \) by Theorem 2. The lemma is proved.
As $G \subseteq \text{Aut } G_0$, the proof of Theorem 3 and hence that of Theorem A has been completed.

4. The proof of Theorem B. Throughout this section we will work under the following assumptions.

Hypothesis 1. Let G be a finite group, z an involution in G and $H = C_G(z)$.
Suppose that $G \neq H \cdot O(G)$ and that H satisfies:

(I) $J = O_2(H)$ is the direct product of a group of order two and an extra-special subgroup of order 2^9, $J' = \langle z \rangle$ and $C_H(J) \subseteq J$;

(II) $H/J = \text{Aut } PSp_4(3)$;

(III) $C_J(x) \neq C_J(y)$.

We will put $Z(J) = \langle z, z_1 \rangle$ and otherwise use the same notation as in the proof of Theorem 3 in §3.

As $T_1 \cap J = Z_2 \times Q_8$ and $T_1/J \cap T_1 = Q_8$, $T_1/Z(J) = E_4 \times Q_8$ and $T_1 = T_1(T_1 \cap J)$, $T_1 = Q_8$ (although T_1 is not necessarily a direct product this time).

We take $\Omega_1(T_1) = Z(T_1) = \langle t, z, z_1 \rangle$. Further, $T_2 = \langle z_1 \rangle \times [M, C_4(x_1)] \cdot \langle t, u, v \rangle$ and $T_3 = \langle z_1, z \rangle \cdot \langle t, u, v \rangle$ with $T_3/Z(J) = D_8$. Note that $Z(T_2) \subseteq Z(J)$ and $Z(T_3) \subseteq \langle Z(J), u \rangle$.

In the same way as in §3 we compute that $J - Z(J)$ has two classes of involutions with representatives j, jz_1—choose j in $[M, C_4(x_1)]$. (To see $j \sim_H jz_1$ use the fact that $j \sim_H jz_1$ is in $C_H(x_1)$.) Further t, tz, tz_1, tz_2 each have 4 conjugates and t_1, t_1z_1 each have 72 conjugates in $\langle t, x_1, x_2 \rangle$. (Here j_1 is an involution in $C_4(t) - Z(C_4(t))$.) Finally, if $x^2 \in \langle z \rangle$ and $xJ \sim_H uJ$, then x is conjugate to (at least) one of ut, utz, utz_1, utz_2; if $x^2 \in \langle z \rangle$ and $xJ \sim_H uJ$ then $x \sim_H v$ or $x \sim_H vz_1$; or if $x^2 \in \langle z \rangle$ and $xJ \sim_H uvJ$ then x is conjugate to one of uv, uz, uz_1, uz_2.

We begin the proof of Theorem B by considering the case when $Z(J) = Z(H)$.

Theorem 4. Suppose Hypothesis 1 holds and, in addition, $Z(J) = Z(H)$. Then

\[Z(G) = \langle z_1 \rangle \quad \text{or} \quad \langle zz_1 \rangle \quad \text{and} \quad G \text{ contains a subgroup } G_0 \text{ of index two with } G_0/Z(G) = U_6(2) \quad \text{and} \quad G \subseteq \text{Aut } G_0. \]

As usual, the proof will be carried out in a series of lemmas.

Lemma 4.1. The involutions z, z_1, zz_1 lie in distinct conjugacy classes in G. Hence a Sylow 2-subgroup of H is a Sylow 2-subgroup of G.

Proof. As $H = C_G(\langle z \rangle)$, $J = O_2(G(\langle z \rangle))$, whence $\langle z \rangle = J' \cap N_G(\langle z \rangle)$. If T is a Sylow 2-subgroup of H then $Z(T) = \langle z, z_1 \rangle$, so $\langle z \rangle \subseteq N_G(T)$. Thus $T = N_G(T)$ and T is a Sylow 2-subgroup of G (by Sylow’s theorem) and z, z_1, zz_1 lie in distinct conjugacy classes by Burnside’s lemma [3, Theorem 7.1.1].

Lemma 4.2. There is an element g in either $C_G(z_1)$ or $C_G(zz_1)$ such that $z^g \in H - \langle z \rangle$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Suppose that $z^g \in H$, $g \in C_G(z_1)$ or $C_G(zz_1)$, implies $z^g = z$. We will show, in a number of steps below, that $\langle z \rangle$ is weakly closed in H—this will contradict Proposition 2 as we have assumed $G \neq H \cdot O(G)$.

(a) If $W \supseteq Z(J)$, $W \cong E_8$, then $N_G(W) \subseteq H$. For $g \in N_G(W)$, we have $\langle z, z_1 \rangle^g \cap \langle z, z_1 \rangle \neq 1$. If $g \notin H$, $z \neq z^g \in W \subset H$ and $g \in C_G(z_1)$ or $C_G(zz_1)$, as $z_1 \sim_G zz_1$.

(b) $z \sim_G j$ for any $j \in J - \langle z \rangle$. (If $j \in J - Z(J)$ and K is a Sylow 2-subgroup of $C_H(j)$, then $Z(K) = \langle z, z_1, j \rangle$. Thus $N_G(K) \subseteq H$ by (a) and $z \sim_G j$. We already have $z_1 \sim_G z \sim_G zz_1$—Lemma 4.1.)

(c) $z \sim_G x$ for any involution x in tJ. (Using the structure of $Aut PSp_4(3)$ and the remarks at the beginning of this section we easily compute that if x is an involution in tJ and X is a Sylow 2-subgroup of $C_H(x)$, then $Z(X) \subseteq \langle t, J \rangle$. Suppose there is a 2-subgroup Y of $C_G(x)$ with $|Y : X| = 2$. For $y \in Y - X$, $\langle z, z_1 \rangle^y \cap J \neq 1$ so $z \neq z^y \in Z(X)$ with $y \in C_G(z_1)$ or $y \in C_G(zz_1)$ by (b) and Lemma 4.1. We conclude that $z \sim_G X$.)

(d) $\sigma_1, \sigma_1\sigma_2^{-1}$ and $\sigma_1 \sigma_2$ lie in distinct conjugacy classes in G. (As $Z(T_2) = Z(J)$, $Z(T_1) = \langle t, z, z_1 \rangle, Z(J) \subseteq Z(T_3) \subseteq \langle ut, z, z_1 \rangle$, (a) and (b) yield that T_1, T_2, T_3 are Sylow 2-subgroups of $C_G(\sigma_1), C_G(\sigma_1\sigma_2^{-1}), C_G(\sigma_1\sigma_2)$, respectively. The result follows as the T_i have different orders.)

(e) $z \sim_G x$ for any involution $x \in utJ$. (If $z \sim_G x$, x would be conjugate to an involution in $Z(T_3) = \langle ut, z, z_1 \rangle$. The result follows from Proposition 4, (d), (a) and Burnside’s lemma.)

(f) $z \sim_G x$ for any involution $x \in wuJ$. (If $z \sim_G x$ then z is conjugate to an involution in $\langle ux, z, z_1 \rangle$. However $\langle ux, z, z_1 \rangle$ is a Sylow 2-subgroup of $C_H(B)$ where B is a Sylow 5-subgroup of H. We get the required contradiction in the same way as in (e).)

(g) $z \sim_G v$ and $z \sim_G vz_1$. (If z is conjugate to v in G then z must be conjugate to an involution x in $C_G(\sigma_1\sigma_2^{-1}), x \in wuJ \cap C_H(\sigma_1\sigma_2^{-1})$, by (d) and Proposition 4. If X is a Sylow 2-subgroup of $C(x) \cap T_2$ then X is abelian as $[t, J] \cap Z(J) = 1$ and $|C_G(x) \cap T_2| = 8$. We can apply the same argument as given in the second paragraph of the proof of Lemma 1.6 to $\Omega_4(X)$ to show V is a Sylow 2-subgroup of $C(x) \cap C_G(\sigma_1\sigma_2^{-1})$. Thus $v \sim_G z$. A similar argument yields $z \sim_G vz_1$ also.)

This completes the proof of the lemma.

Let $F = C_J(\langle u, \ i \rangle)$ and $E = C_H(F)$. In this case, $F \cong E_6$. $|E| = 2^{10}$ and (using the same arguments as in §3) $N_H(E)/E \cong \Sigma_5$.

Lemma 4.3. We may assume that $C_G(z_1)$ contains a subgroup U of index two with $C_G(z_1) = U\langle v \rangle$ and $U/\langle z_1 \rangle \cong U_6(2)$. Further, E is weakly closed in T with respect to G and $N_G(E)/E \cong L_3(4)$.

Proof. By Lemma 4.2 we may assume that there exists $g \in C_G(z_1)$ with $z^g \in H - \langle z \rangle$. Thus $C_G(z_1) \neq O(C_G(z_1)) \cdot H$ by Proposition 2. It follows therefore from Theorem 3 that $C_G(z_1)$ contains a subgroup U with the properties stated. The proof that E is weakly closed in T is the same as that given in Lemma 3.3.

Lemma 4.4. We have $N_G(E) \subseteq C_G(z_1)$ and z_1 is not conjugate (in G) to any involution in $H'\langle z_1 \rangle - \langle z_1 \rangle$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. If \(z \sim_G j \) for some involution \(j \in J - Z(J) \) and \(X \) is a Sylow 2-subgroup of \(C_H(j) \), there exists a 2-group \(Y \subseteq C_G(j) \) with \(|Y:X| = 2\). For \(y \in Y - K \), \(z^y \in \langle j, z, z_1 \rangle - \langle z \rangle \) and \(y \in C_G(z_1) \) or \(C_G(zz_1) \). However this is not possible—see Lemma 3.2. We conclude \(z \sim_G j \) for any \(j \in J - \langle z \rangle \). It follows by the argument of Lemma 3.4 that \(N_G(E) \) contains a subgroup \(K \) of index two with \(N_G(E) = K \langle v \rangle \), and \(K/E \cong L_3(4) \). Thus \(N_G(E) \subseteq C_G(z_1) \) by Lemma 4.3. Finally, recall that each involution in \(H' \langle z_1 \rangle \) is conjugate to an involution in \(E \). Hence as \(E \) is weakly closed in \(T \) and \(C_G(z_1) \supseteq N_G(E) \), it follows immediately that \(z_1^G \cap H' \langle z_1 \rangle = \{z_1\} \).

Lemma 4.5. We have \(G = C_G(z_1) \).

Proof. We claim that \(G \) contains a subgroup \(G_0 \) of index two. In order to use the proof of Lemma 3.6 we only have to show \(z \sim_G x, x \in uvJ \). (We have already shown \(z^G \cap J = \{z\} \) in the proof of Lemma 4.4.) As in the proof of Lemma 4.2(f) let \(\langle uv, z, z_1 \rangle \) be a Sylow 2-subgroup of \(C_H(B) \), \(|B| = 5\). By Proposition 4, \(z \) is conjugate to an involution in \(uvJ \) if and only if \(z \) is conjugate to an involution in \(uvZ(J) \) in \(C_G(B) \). It follows that \(z \) must be conjugate to an involution in \(uvZ(J) \) in \(C_G(z_1) \) or \(C_G(zz_1) \), which is not the case. We conclude, as in Lemma 3.6, that \(G \) contains a subgroup \(G_0 \) with \(G = G_0uv \).

If \(z_1 \notin G_0 \) then we conclude from Theorem 3 that \(G_0 \) contains a subgroup \(G_1 \) of index two with \(G_1 \cong U_4(2) \). In this case \(G \subseteq C_G(z_1) \) and the lemma is proved. Therefore we will assume \(z_1 \in G_0 \). It follows that \(G_0 \cap H = H' \langle z_1 \rangle \) whence \(z_1^G \cap H = \{z_1\} \). Proposition 2 yields \(G = C_G(z_1) \cdot O(G) \) and it remains to show that \(O(G) = 1 \).

Since we may assume \(z \sim_G t \), it follows that \([tz, O(G)] = 1 \). However \(tz \sim_G j_0 \) for some \(j_0 \in J \) (Lemma 3.5) and \(j_0 \sim_H j_0^z \). Thus \([j_0, O(G)] = [j_0^z, O(G)] = 1 \) whence \(O(G) \subseteq H \) so \(O(G) = 1 \). The lemma is proved.

It is clear that Theorem 4 follows immediately from Lemmas 4.5 and 4.3. To complete the proof of Theorem B it only remains to consider the case \(Z(J) \neq Z(H) \).

Theorem 5. Suppose Hypothesis 1 holds and, in addition, \(Z(J) \neq Z(H) \). Then \(G \cong M(22) \).

We proceed (as usual) to give the proof in a series of lemmas, after making the obvious remark that \(C_H(Z(J))/J \cong PSp_4(3) \), and if \(h \in H - C_H(Z(J)) \) then \(z_1^h = z_1^z \).

Lemma 5.1. The cosets \(uvJ \) and \(uvJ \) each contain precisely one class of involutions in \(H \).

Proof. Let \(X = \langle uv, \sigma_1\sigma_2, J \rangle \) so that \(X/J \cong \Sigma_3 \). By our assumptions above, \(\langle uv, Z(J) \rangle \) is a Sylow 2-subgroup of \(N_X(\langle \sigma_1\sigma_2 \rangle) \). As \(\langle uv, Z(J) \rangle \) is nonabelian, \(\langle uv, Z(J) \rangle \cong D_8 \) so \(N_X(\langle \sigma_1\sigma_2 \rangle) \) contains precisely one class of involutions which are not in \(J \). The result follows for the coset \(uvJ \) from Proposition 1, and exactly the same argument applied to \(\langle v, \sigma_1\sigma_2, J \rangle \) yields the result for \(uvJ \).

Lemma 5.2. The involution \(z_1 \) is not conjugate (in \(G \)) to any involution in \(J - \{z_1, z_1z\} \).
Proof. If \(Y \) is a Sylow 2-subgroup of \(C_H(z_1) \) then clearly \(Z(Y) = Z(J) = \langle z, z_1 \rangle \). As \(J = O_2(C_G(\langle z, z_1 \rangle)) \) and \(J' = \langle z \rangle \), \(Y \) must be a Sylow 2-subgroup of \(C_G(z_1) \) whence \(z_1 \not\sim_J z \). Recall that \(J - Z(J) \) has two classes of involutions in \(H \) with representatives \(j, jz_1 \) (and each has 270 conjugates in \(H \)). If \(K \) is a Sylow 2-subgroup of \(C_H(j) \) then \(K \leq C_H(Z(J)) \) so \(Z(K) = \langle z, j \rangle \). If \(j \) is conjugate to \(z_1 \) in \(G \), then there exists \(g \in G \) with \(\langle z, j \rangle^g = \langle z, z_1 \rangle \). Thus \(z^g = z \) and \(g \in H \) which is a contradiction. The same argument shows \(z_1 \not\sim_G jz_1 \) and the lemma follows.

Lemma 5.3. We have \(\langle \sigma_1 \rangle \not\sim_G \langle \sigma_1 \sigma_2^{-1} \rangle \sim_G \langle \sigma_1 \sigma_2 \rangle \).

Proof. Note that \(|T_2| = 2^8 \) and \(Z(T_2) = \langle z \rangle \), so that \(T_2 \) is a Sylow 2-subgroup of \(C_G(\langle \sigma_1 \rangle) \). Now \(|T_1| = 2^7 \) and \(Z(T_1) \approx E_8 \) whence if \(T_2^g \subseteq T_2 \) for some \(g \in G \), \(|Z(T_2)| > 4 \). We conclude that \(\langle \sigma_1 \rangle \not\sim_G \langle \sigma_1 \sigma_2^{-1} \rangle \). If \(T_2^g \subseteq T_2 \) for some \(g \in G \) then \(z \in T_3 \) implies \(z^g \in T_2 \subseteq T_2 \cap J \). However \(|T_3| = 2^5 \) while \(|C(z^g) \cap T_2| > 2^7 \), clearly a contradiction. The lemma is proved.

Lemma 5.4. Either \(C_G(\langle \sigma_1 \rangle) = O(C_G(\langle \sigma_1 \rangle)) \cdot C_H(\langle \sigma_1 \rangle) \) or \(C_G(\langle \sigma_1 \rangle) \) contains a subgroup \(U \) of index two with \(U \langle z_1 \rangle = C_G(\langle \sigma_1 \rangle) \) and \(U/\langle \sigma_1 \rangle \approx U_4(3) \). Further, if \(z \) is conjugate to some involution in \(T_2 - \langle z \rangle \) in \(G \) then, with appropriate choice of elements, we have the following fusion in \(C_G(\langle \sigma_1 \sigma_2 \rangle) \):

\[
\begin{align*}
z & \sim j \sim t \sim tz \sim uw \sim uvz_1 \sim jz_1 \sim tz_1z \sim z_1 \sim tz_1.
\end{align*}
\]

Proof. If \(z \) is not conjugate to any involution in \(T_2 - \langle z \rangle \) then \(C_G(\langle \sigma_1 \rangle) = O(C_G(\langle \sigma_1 \rangle)) \cdot C_H(\langle \sigma_1 \rangle) \) by Proposition 2. Hence we will suppose \(z \sim_G x \) for some \(x \in T_2 - \langle z \rangle \). By Proposition 4 and Lemma 5.3, \(z \sim x \) in \(C_G(\langle \sigma_1 \rangle) \). Let \(X = C_G(\langle \sigma_1 \rangle) \) and \(Y = C_H(\langle \sigma_1 \rangle) \). We take \(uw \) to be an involution (in \(N_Y(\langle \sigma_1 \rangle) \)) and \(C_Y(uw) \cap \langle t, z, z_1 \rangle = \langle z, tz_1 \rangle \) so that \(t^uw = tz_1 \). \(\langle t, z, z_1 \rangle = C_Y(\langle \sigma_1 \rangle) \cap T_2 \). As \(t, uw \) interchange the two quaternion subgroups in \(O_2,3(X) = [M, Y \cap J] \), we have \(C_Y(t) \cap Y = E_8, C_Y(uw) \cap Y = E_8 \) and \(C_Y(uwz_1) \cap Y = Z_4 \times Z_2 \). Thus \(Y \) contains 9 classes of involutions with representatives \(z, z_1, j, jz_1, t, tz_1, tz_1z, uw, uwz_1 \). Further, \(T_2 \) contains precisely one elementary abelian subgroup of order 32, namely \(W = \langle t \rangle \times (C_Y(t) \cap T_2) \).

Suppose at first that \(z \) is not conjugate (in \(X \)) to any involution in \(W - \langle z \rangle \). Thus \(z \sim_X uw \) or \(z \sim_X uwz_1 \). If \(K \) is a Sylow 2-subgroup of \(C_Y(uw) \) then \(Z(K) = \langle uw, z, j' \rangle \) (for some \(j' \in J \cap Y - Z(J) \)). However \(\langle j', j'z \rangle \not\sim_N K(X) \) (by Lemma 5.1) whence \(\langle z \rangle \not\sim_X K(X) \) so \(K \) is a Sylow 2-subgroup of \(C_Y(uw) \) and \(z \not\sim_X uw \). If \(L \) is a Sylow 2-subgroup of \(C_Y(uwz_1) \) then \(\langle z \rangle \subseteq \mathfrak{S}^1(L) \subseteq L \cap J, \) so \(\langle z \rangle \not\sim_X L \) and \(z \not\sim_X uwz_1 \) either. We have proved that \(z \sim_X w \) for some \(w \in W - \langle z \rangle \) and thus \(z \sim w \) in \(N_X(W) \) (as \(W \) is normal in any Sylow 2-subgroup which contains it). Thus \(N_X(W) \neq N_Y(W) \).

We have \(C_X(W) = W \times \langle \sigma_1 \sigma_2^{-1} \rangle, N_X(W)/C(W) = \mathfrak{S}_4, T_2/W = D_8 \) and \(T_2 \) is a Sylow 2-subgroup of \(N_X(W) \). If \(xC(W) \) centralizes \(j_2C(W) \) in \(N_X(W)/C_X(W) \), where \(\langle j_2 \rangle C(W)/C(W) = Z(T_2C(W)/C(W)) \) then \(x \) normalizes \(C_{\mathfrak{S}_4}(j_2) = \langle z, z_1, j' \rangle \) for some \(j' \in W \cap J \) and therefore \(x \) normalizes \(\langle z_1z, z_1 \rangle \) by Lemma 5.2; i.e. \(x \in N_Y(W) \). It now follows from a result of Gorenstein and Walter [7, Theorem 1] that \(N_X(W)/C_X(W) \approx \mathfrak{S}_5, L_2(7) \) or \(\mathfrak{S}_6 \).
In \(N_x(W)\), \(z\) has 1 conjugate, \(z_1\) has 2 conjugates, \(j, jz_1\) each have 6, \(t\) has 8, and \(tz_1, tz_1z\) each have 4 conjugates. If \(N_x(W) / C_x(W) \cong \Sigma_5\), as \(z_1\) must have 10 conjugates we may assume (without loss) that \(j\) still has only 6 conjugates in \(N_x(W)\). This forces \(z \in \langle j^{N(W)} \rangle \subset J \cap W\) which is not possible as \(z\) has 5 conjugates in \(N_x(W)\) (recall \(j \sim jz\) in \(T_2 \cap J\)). If \(N_x(W) / C_x(W) \cong L_2(7)\), \(z, z_1\) must have 7, 14 conjugates, respectively, and we again may assume that \(j\) has only 6 conjugates in \(N_x(W)\). This forces \(J \cap W = \langle z^{N(W)}, j^{N(W)} \rangle \leq N_x(W)\), a contradiction. We have proved therefore that \(N_x(W) / C_x(W) \cong \mathfrak{S}_6\) and (as above) determine that \(z \sim j \sim t\) (\(z \sim j \sim tz\) forces \(z \sim j\) as \([\langle \sigma_1 \sigma_2 \rangle, W \rangle \subset [M, J]\)), \(z_1 \sim tz_1\) and \(jz_1 \sim tz_1z\) (as we may interchange \(t, tz_1, tz\) if necessary). Since \(\mathfrak{S}_6\) has one class of involutions, it follows that all involutions in \(N_x(W) - W\) are conjugate either to \(z\) or \(jz_1\) (as \(jzW\) contains two classes in \(Y\) with representatives \(j_2, jz_1\)), for some \(j_2 \in (J \cap T_2) - W\). It follows from the uniqueness of \(W\) (in \(T_2\)) that \(z_1\) is not conjugate to any involution in \(\langle t, uw \rangle \cdot [M, Y \cap J]\) and so \(X\) has a subgroup \(X_1\) of index two with \(z_1 \in X - X_1\). Clearly \(z \in X_1 \cap W\) whence \(X_1 \cap W = \langle z^{N(W)} \rangle \cong E_{16}\).

We see that \(X_1\) has no subgroup of index two and that \(X_1 \cap Y\) satisfies the assumptions for the centralizer of an involution in Proposition 6. Thus we conclude that \(X_1 / \langle \sigma_1 \sigma_2^{-1} \rangle \cong U_4(3)\) as \(\langle t, uw \rangle \cong D_8\). This completes the proof of the lemma.

As above we take \(F = C_J(\langle u, t \rangle) \cong E_{64}\) and \(E = C_H(F)\). Thus \(|E| = 2^{10}\) and \(N_H(E) / E \cong \Sigma_5\). Let \(T\) be a Sylow 2-subgroup of \(N_H(E)\) (whence \(T\) is a Sylow 2-subgroup of \(G\)).

Lemma 5.5. The subgroup \(E\) is elementary abelian (of order \(2^{10}\)) and weakly closed in \(T\) with respect to \(G\).

Proof. As we chose \(T_3 = \langle u, t, v \beta \rangle Z(J)\), \(u\) normalizes \(\langle t, Z(J) \rangle\) whence \([u, t] = 1\) or \((ut)^2 = z\) which implies \(tz_1^u = tz_1z\). Thus if \((ut)^2 = z\), \(z\) cannot be fused to any involution in \(T_2 - \langle z \rangle\) by Lemma 5.4 and so \(z^G \cap H \subset \{z\} \cup z_1^H \cup z_1z^H\). This leads to a contradiction as in the proof of Lemma 2.3. Hence \([t, u] = 1\) and \(E\) is elementary abelian. The proof that \(E\) is weakly closed in \(T\) follows as in the proof of Lemma 3.3.

Lemma 5.6. We have \(N_G(E) / E \cong M_{22}\) (the Mathieu group on 22 letters) and \(C_G(\sigma_1 \sigma_2^{-1}) = U \langle z_1 \rangle\) where \(U / \langle \sigma_1 \sigma_2^{-1} \rangle \cong U_4(3)\).

Proof. By Lemma 5.4 we have that \(z \sim_G e\) for some \(e \in E - \langle z \rangle\). Hence Lemma 5.5 forces \(z \sim e\) in \(N_G(E)\) and \(N_G(E) \neq N_H(E)\). We first show that for any \(j_0 \in J - E\), \(O(C_{N(E) / E}(j_0E)) = 1\). Suppose \(gE \in O(C(j_0E))\). Then as \(JE/E \subseteq C(j_0E)\) it follows that \([g, K] \subseteq E\) for \(K / E\) a subgroup of index two in \(JE / E\). As \(\langle z, z_1 \rangle \subset Z(K) \subset J \cap E\) and \(g\) normalizes \(Z(K)\) it follows by Lemma 5.2 that \(g\) normalizes \(\{z_1, z_1z\}\). Hence \(g \in H\) so \(g \in E\) and \(O(C(j_0E)) = 1\). This forces, in addition, that \(O(N_G(E) / E) = 1\) also.

If \(N_G(E) / E\) possesses a subgroup \(L / E\) of index two then \(L / E \cong L_2(4)\) as in the proof of Lemma 2.4. However this means \(z\) must have 21 conjugates in \(N_G(E)\) so \(z \sim_G tz_1\) or \(tz_1z\), against Lemma 5.4. Thus \(N_G(E) / E\) does not contain a subgroup of index two. If \(j_0 \in J - E\) then \(|C_{N(E) / E}(j_0E)| < 2^7 \cdot 15\) as \(z \in [j_0, E]\) of order at
most 16, and \(N_G(\mathcal{E}) \subseteq H \). Thus as \(T/E \) is of type \(\hat{A}_8 \) (see Lemma 3.4), the combined work of Gorenstein and Harada [5] and Phan [18] yields \(N_G(\mathcal{E})/E \cong M_{22} \) or \(U_d(3) \). Since \(N_G(\mathcal{E})/E \cong U_d(3) \) implies \(|N_G(\mathcal{E})| > |E| \), we have \(N_G(\mathcal{E})/E \cong M_{22} \), and \(z \) has 231 conjugates in \(N_G(\mathcal{E}) \). It follows that \(z \sim j \sim t \sim ut \) say, where \([ut, v\beta] = 1 \) in \(T_3 \), \(z_1 \sim tz_1 \), and all other involutions in \(E \) (there are 770) are conjugate to \(jz_1 \) in \(N_G(\mathcal{E}) \). (This last fact follows from some simple computations and the structure of \(M_{22} \) — however it is not needed in this work.)

Lemma 5.7. We have \(C_G(z_1)/\langle z_1 \rangle \cong U_d(2) \) and \(G \cong M(22) \).

Proof. As \(\langle z \rangle \) is not weakly closed in \(C_H(z_1) \) with respect to \(C_G(z_1) \) (use either Lemma 5.4 or 5.6), we have \(C_G(z_1)/\langle z_1 \rangle \cong U_d(2) \) by Theorem 2. We next show that \(z_1 \in C_G(z_1)' \) so that \(C_G(z_1) \cong \hat{U}_d(2) \) — a two-fold covering group of \(U_d(2) \).

Recall that \(Z(T_1) = \langle t, z, z_1 \rangle \) and the Sylow 2-subgroup \(\langle v, T_1 \rangle \) of \(N_G(\langle \sigma_1 \rangle) \) has centre \(\langle tz_1, z \rangle \). As \(z^G \cap Z(T_1) = \{z, t, tz\} \), \(z_1^G \cap Z(T_1) = \{z_1, z_1z, tz_1\} \), it follows immediately from Sylow's theorem that \(T_1 \) is a Sylow 2-subgroup of \(C_G(\sigma_1) \).

Now \(T_1 \) contains \(\langle u, t, z, z_1 \rangle \cong E_{16} \) so \(\sigma_1 \cong \sigma_1 \sigma_2 \) whence Lemma 5.3 and Proposition 4 imply \(z \sim t \sim tz \) in \(C_G(\sigma_1) \). Thus \(z \sim t \sim tz \) in \(N(T_1) \cap C_G(\sigma_1) \) by Burnside's lemma. If \(z_1 \in T_1 \) then \(T_1 \cong Z_2 \times Q_8 \times Q_8 \) (see §3, introductory remarks) with \(\Phi_1(T_1) = \langle t, z \rangle \). However it is now impossible for \(z, t, tz \) to be conjugate in \(N(T_1) \cap C_G(\sigma_1) \) so we have proved \(z_1 \in T_1 \) whence \(z_1 \in C_G(z_1)' \).

It follows from a result of Griess [8] that \(C_G(z_1) \) is uniquely determined. Thus D. Hunt's result [11] yields \(G \cong M(22) \) once we have observed that \(G \) is simple. As \(z \sim G t \sim G tz \), we have \(O(G) = 1 \) immediately, so if \(1 \neq N \triangleleft G \) then \(z \in N \). Hence, as \(\langle z^G \cap H \rangle = H \) we have \(H \subseteq N \), so \(N = G \) as \(Z(T) = \langle z \rangle \). This completes the proofs of the lemma and Theorem 5.

5. The proof of Theorem C. Throughout this section, \(G \) will denote a finite group which satisfies the assumptions of Theorem C. In addition we will assume that \(G \neq H \cdot O(G) \) so that \(z \sim_G h \), for some \(h \in H \) — \(\langle z \rangle \) by Proposition 2. From our assumptions on the structure of \(H \) we have \(C_H(c) = \langle c \rangle \times P \) where \(P/\langle z \rangle \cong PSp_4(3) \). Thus \(P \cong Z_2 \times PSp_4(3) \) or \(PSp_4(3) \) (the covering group for \(PSp_4(3) \)). Further, \(N_H(\langle c \rangle) = \langle c \rangle \times P \langle v \rangle \), and we will take all the elements used to describe the structure of \(\text{Aut} \ PSp_4(3) \) in §1 to lie in \(\langle c \rangle \langle v \rangle \). In particular we see that \(t^2 = 1 \).

As \(|J'| = 2 \), we have \(J' = \langle z \rangle \), and if \(\langle z_1, z_2 \rangle = [\langle c \rangle, Z(J)], \) then \(Z(J) = \langle z, z_1, z_2 \rangle \) and \(J = \langle z_1, z_2 \rangle \times J_0, \) \(J_0 \cong Q_8 \times Q_8 \times Q_8 \). Clearly \(H' = C_H(c) \cdot J \) and \(H'' = P \cdot J = C_H(Z(J)) \). If \(T = \langle j, t, \alpha_1, \alpha_2, \beta_1, \beta_2, u, v \rangle \) then \(T \) is a Sylow 2-subgroup of \(H \) and we take \(z_2^v = z_1 \) so \(Z(T) = \langle z, z_1 \rangle \). As usual, \(T_2 = \langle C_J(\sigma_1 \sigma_2), uv, t \rangle \) is a Sylow 2-subgroup of \(C_H(\sigma_1 \sigma_2) \) and \(Z(T_2) = \langle z, z_1 \rangle \).

Repeating the arguments of previous sections we see that \(J \) has 5 classes of involutions with representatives \(z(1), z(3), z(xz(3), j(270), jz_1(810)) \) where \(j \in [C_J(\sigma_1 \sigma_2), M] \). (The numbers in brackets of course denote the number of conjugates of each of the involutions.) In \(tJ, t(4), tz_1(4), tz_1z_1(12), tz_1z(12), j_1(72), j_1z_1(216) \) (\(j_1 \in C_J(t) - Z(C_J(t)) \)) are representatives of the classes of involutions, where \(t \sim_H tz \) and \(tz_1 \sim_H tz_1z \) only if \(P \cong PSp_4(3) \).
In $v J$, u_{16}, u_{16}, u_{16}, u_{16}, u_{16}, u_{16} represent the classes of elements with square in $<z>$, while if $x^{2} \in <z>$, $x \in v J$ implies $x \sim_{H} v$, and $x \in \mu J$ implies $x \sim_{H} w v$ or $x \sim_{H} w v z$. In addition, $C_{J}(v) = E_{32}$ while $C_{J}(w v) = E_{64}$, $C_{J}(u t) = E_{128}$ and $C_{J}(t) = E_{16} \times Q_{8} \star Q_{8}$.

Finally we consider the elements of order three. If $y^{3} = 1$, $y \in H$, then y is conjugate to an element in $<c, \sigma_{1}, \sigma_{2}^{*}>$, $C_{H}(<c, \sigma_{1}, \sigma_{2}^{*}>) = (M \times <e>)<t, z>$ and $N_{H}(<c, \sigma_{1}, \sigma_{2}^{*}>) = C_{H}(<c, \sigma_{1}, \sigma_{2}^{*}>) \times <u, v>$. We see that there are 9 conjugacy classes of elements of order 3 in H. In the table below Y denotes a Sylow 2-subgroup of $C_{H}(y)$.

Conjugacy classes of elements of order three in H

<table>
<thead>
<tr>
<th>y</th>
<th>$Y \cap J = C_{J}(y)$</th>
<th>$Y / Y \cap J$</th>
<th>$Z(Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{1}</td>
<td>$E_{4} \times Q_{8}$</td>
<td>Q_{8}</td>
<td>$<t, Z(J)>$</td>
</tr>
<tr>
<td>σ_{2}^{1}</td>
<td>$E_{4} \times Q_{8} \star Q_{8}$</td>
<td>E_{4}</td>
<td>$<z_{1}, z>$</td>
</tr>
<tr>
<td>σ_{2}</td>
<td>$Z(J)$</td>
<td>D_{8}</td>
<td>$<ut, z_{1}, z>$</td>
</tr>
<tr>
<td>c</td>
<td>$<z>$</td>
<td>type $PSp_{4}(3)$</td>
<td>$<z, t>$</td>
</tr>
<tr>
<td>$c \sigma_{1}^{-1}$</td>
<td>$Q_{8} \star Q_{8} \star Q_{8}$</td>
<td>Q_{8}</td>
<td>$<z>$</td>
</tr>
<tr>
<td>$c \sigma_{1}$</td>
<td>$<z>$</td>
<td>Q_{8}</td>
<td>$<t, z>$</td>
</tr>
<tr>
<td>$c \sigma_{2}$</td>
<td>Q_{8}</td>
<td>Z_{2}</td>
<td>$<t, z>$</td>
</tr>
<tr>
<td>$c \sigma_{1} \sigma_{2}^{-1}$</td>
<td>$Q_{8} \star Q_{8}$</td>
<td>E_{4}</td>
<td>$<u, z>$</td>
</tr>
<tr>
<td>$c \sigma_{1} \sigma_{2}$</td>
<td>$Q_{8} \star Q_{8}$</td>
<td>E_{4}</td>
<td>$<t, z>$</td>
</tr>
</tbody>
</table>

Lemma 6.1. The involutions $z, z_{1}, z_{1} z$ lie in distinct conjugacy classes in G. Further, a Sylow 2-subgroup T of H is a Sylow 2-subgroup of G.

Proof. As $J = O_{2}(C_{G}(Z(T)))$ and $<z> = J'$, $N_{G}(Z(T)) \subseteq H$ whence $N_{G}(T) = T$ and the result follows from the theorems of Sylow and Burnside.

Lemma 6.2. If $<\sigma_{1} \sigma_{2}^{*}> \subseteq H$ for some $g \in G$ then there exists $h \in H$ with $<\sigma_{1} \sigma_{2}^{*}>^{h} = <\sigma_{1} \sigma_{2}^{*}>^{g}$.

Proof. Let $y^{3} = 1$, $y \in H$ but $y \sim_{H} \sigma_{1} \sigma_{2}^{-1}$. We have to show $y \sim_{G} \sigma_{1} \sigma_{2}^{-1}$. As $Z(T_{2}) = <z, z_{1}>$ we see that T_{2} is a Sylow 2-subgroup of $C_{G}(\sigma_{1} \sigma_{2}^{-1})$ by Lemma 6.1. As $|T_{2}| = 2^{9}$ it is immediate that $\sigma_{1} \sigma_{2}^{-1} \sim_{G} c \sigma_{1}$. Further, if $\sigma_{1} \sigma_{2}^{-1} \sim_{G} y$, then if $|Y| < 2^{9}$, we must have $|Z(Y)| > 8$. Hence it only remains to consider $y = \sigma_{1}$ or $\sigma_{1} \sigma_{2}$. We have $\sigma_{1} \sim_{G} \sigma_{1} \sigma_{2}^{-1}$ by the argument of Lemma 3.1. If $T_{3} \subseteq T_{2}$ for some $g \in G$ (T_{3} a Sylow 2-subgroup of $C_{H}(\sigma_{1} \sigma_{2})$, as usual), then since $|T_{3}| = 2^{6}$, $z^{8} \in \mu J \cap T_{2}$ ($|C(\mu J) \cap T_{2}| = 2^{5}$). However in this case $Z(T_{3}) = <ut, z, z_{1}> = E_{8}$ while $C(z^{8}) \cap T_{2}$ has centre of order 16. We conclude that $\sigma_{1} \sigma_{2}^{-1} \sim_{G} \sigma_{1} \sigma_{2}$ and the lemma is proved.

As in the proof of Lemma 5.4, let $W = <t> \times (C_{J}(t) \cap T_{2})$, the unique elementary abelian subgroup of order 64 in T_{2}.

Lemma 6.3. If $X = C_{G}(\sigma_{1} \sigma_{2}^{-1})$ and $Y = C_{H}(\sigma_{1} \sigma_{2}^{-1})$ then one of the following holds:

(i) $X = O(X) \cdot Y$ and $z^{G} \cap Y = \{z\}$;
(ii) $N_X(W)/C_X(W) = G$ and with appropriate choice of t, uv we have the following fusion of involutions in X:

$$z \sim t \sim tz_1z \sim jz_1 \sim uv \sim uvt \sim z_1 \sim uvz \sim z_1z \sim tz;$$

(iii) $N_X(W)/C_X(W) \cong Z_3^3 \cdot \Sigma_5$, $\langle z_1, z_2 \rangle \triangleleft N_X(W)$ and $|Z_G \cap W| = 5$ with $z \sim G t$.

Proof. As usual, Proposition 4 and Lemma 6.2 imply that for any involution $y \in Y, z \sim y$ if and only if $z \sim X y$. Assume $X \neq O(X) \cdot Y$ so that $z \sim y$ for some $y \in Y - \langle z \rangle$ by Proposition 2. We note that $Y = Y_0 \cdot Y_1$ where $Y_0 \cap Y_1 = 1$, $Y_0 = \langle z_1, z_2, c \rangle \cong \mathbb{Z}_4$, $Y_1 = \langle uv, t, M \rangle[O, Y \cap J]$ with $Y_1/\langle \sigma_1 \sigma_2 \rangle$ satisfying the assumptions of the centralizer of an involution in Proposition 6.

Suppose at first that $z \sim X w$ for any $w \in W - \langle z \rangle$. Then it follows, as in the proof of Lemma 1.6, that $z \sim uv$ and if $z \sim uv$, then $C_Y(uv) = \langle \sigma_1 \sigma_2 \rangle \times L$ where $L = E_{32}$. In this case we have $N_Y(L)/C_Y(L) \cong E_8$ whence z has 9 conjugates in $N_X(L)$. Thus $N_X(L)$ contains a normal subgroup L_1 with $|L_1 : L| = 2$. However $L_1 \subset T_2$ and $(z) = Z_G \cap Z(L_1)$ which yields $\langle z \rangle \triangleleft N_X(L)$, a contradiction. We conclude that $z \sim X w$ for some $w \in W - \langle z \rangle$ and hence $z \sim w$ in $N_X(W)$.

For the rest of the proof of this lemma, we will use the “bar-convention” for $N_X(W)/C_X(W)$. (Note that $C_X(W) = W \times \langle \sigma_1 \sigma_2 \rangle$.) We have $N_Y(W) = Z_3^2 \cdot \Sigma_4$ and $\langle \sigma_1 \sigma_2 \rangle = O_3(N_Y(W))$. If $\langle \sigma_1 \sigma_2 \rangle \not\subset O(N_X(W))$ then $N_X(W)/O(N_X(W)) \not\cong \mathbb{Z}_7$ by Gorenstein and Walter’s result [7]. It follows immediately that $N_X(W) = \mathbb{Z}_7$ and that z has 35 conjugates in $N_X(W)$. Since $\sigma_1 \sigma_2 \sim \sigma_1 \sigma_3$ in $N_X(W)$, $j \sim z_1$ and $z_1, z_1 z$ have 21, 7 conjugates, respectively, in $N_X(W)$. The rest of the fusion in (ii) follows from an appropriate choice of t, uv and the fact that \mathbb{Z}_7 has one class of involutions.

Suppose now that $\langle \sigma_1 \sigma_2 \rangle \subset O(N_X(W))$. If $j_0 \in T_2 \cap J - W$ then $[j_0, W] = \langle z, j \rangle$ for some $j \in J \cap W$. Thus $|C_{N_X(W)}(j_0)| = 2^3 \cdot 3$ or $2^3 \cdot 3^2$ whence $O(N_X(W)) = \langle \sigma_1 \sigma_2 \rangle$ or $O(N_X(W)) = 4^3$ (recall that $j_0 \in O_2(N_Y(W))$). In the latter case, $|C_{N_X(W)}(j_0)| = 16$, $\langle \sigma_1 \sigma_2 \rangle \subset Z(O(N_X(W)))$. Thus $N_Y(W)$ acts faithfully on $Z(O(N_X(W)))$ which forces $|Z(O(N_X(W)))| > 27$. Hence $O(N_X(W))$ must be abelian, which is a contradiction. It follows that $O(N_X(W)) = \langle \sigma_1 \sigma_2 \rangle$ and, therefore, $\langle z_1, z_2 \rangle = [\sigma_1 \sigma_2, W] \triangleleft N_X(W)$ and $\langle z, t, j_1, j_2 \rangle = C_W(\sigma_1 \sigma_2) \triangleleft N_X(W)$, where $\langle j_1, j_2 \rangle \times Z(J) = J \cap W$. It follows from Gorenstein and Walter’s result [7] and the fact that $N_X(W)$ has a subgroup of index two that $N_X(W) \cong Z_3^3 \cdot \Sigma_5$.

Finally we see that z has only 5 conjugates in $N_X(W)$, whence $|Z_G \cap X| = 5$ also, and take $z \sim G t$ (replacing t by iz if necessary). The lemma is proved.

As in previous sections let $E = C_H(F)$, where $F = C_Y(\langle u, t \rangle)$ ($\cong E_2$). In this case $|E| = 2^{11}$ and $N_H(E)/E \cong Z_3^3 \cdot \Sigma_5$.

Lemma 6.4. The subgroup E is elementary abelian of order 2^{11} and is weakly closed in T with respect to G. In addition, $N_G(E)/E \cong M_{23}$ (the Mathieu group on 23 letters) or $N_G(E)/E$ contains a subgroup of index two which is isomorphic to $PGL(3, 4)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. If E is nonabelian then $(ut)^2 = z$ and $t \sim_H tz$. Hence we must be in case (i) of Lemma 6.3, so $z^G \cap H \subseteq \{z\} \cup \{ut^H \cup utz^H\}. This leads to a contradiction, as in the proof of Lemma 2.3. The proof that E is weakly closed in T follows as in Lemma 3.3.

Lemma 6.3 implies that there exists $e \in E - \langle z \rangle$ with $z \sim e$ in $N_G(E)$; i.e. $N_G(E) \neq N_H(E)$. The argument in Lemma 5.6 combined with $z^G \cap J = \{z\}$ in cases (i), (iii) of Lemma 6.3 and $\langle zz^J \cap J \rangle = Z(J)$ in case (ii) yield that $O(C_{N(E)}/E(jE)) = 1$ (where $j \in J - E$). In particular we have $O(N_G(E)/E) = 1$.

If $N_G(E)/E$ has a subgroup of index two then this subgroup is isomorphic to $PGL(3, 4)$ by Gorenstein’s and Harada’s result [4]. If $N_G(E)/E$ has no subgroup of index two then $N_G(E)/E \cong M_{22}, M_{23}$, or $U_4(3)$ (by [5], [18]) as j_0E has centralizer of order $< 2^7 \cdot 45$ in $N_G(E)/E$ and $N_G(EE) \subseteq H$. It now follows that $N_G(E)/E \cong M_{23}$, as neither M_{22} nor $U_4(3)$ contains a subgroup isomorphic to $E_{16}(Z_3 \cdot \Sigma_3)$.

Lemma 6.5. If $N_G(E)/E \cong PGL(3, 4) \cdot Z_2$ then $\langle z_1, z_2 \rangle = G$ with $G/\langle z_1, z_2 \rangle = Aut U_6(2)$.

Proof. In this case, z has 21 conjugates in $N_G(E)$ so we are in case (iii) of Lemma 6.3. As $N_X(W)/W \leq Z_3 \cdot \Sigma_5$ and $\langle z_1, z_2 \rangle \leq N_X(W)$, it follows from Theorem 2 that $C_G(\langle z_1, z_2 \rangle)/\langle z_1, z_2 \rangle \cong U_6(2)$. In addition, $C_G(z_1) \subseteq N_G(\langle z_1, z_2 \rangle)$ by Theorem 3. Further, $N_G(\langle z_1, z_2 \rangle)/\langle z_1, z_2 \rangle \cong Aut U_6(2)$, and the structure of $Aut U_6(2)$ yields $N_G(E) \subseteq N_G(\langle z_1, z_2 \rangle)$. Thus $z^G \cap H = \{z\} \cup t^H$ and, in particular, $z^G \cap J = \{z\}$ (by Lemmas 6.3 and 6.4).

As $t \sim_G tz$, $[ut, t] = 1$, and as $z \sim x t$, we have $(ut)^2 = 1$. If $z \sim_G uv$ then $z \sim x uv$ by Proposition 4 and Lemma 6.2. If K is a Sylow 2-subgroup of $C_G(ut)$ then $Z(K) = \langle z, z_1, j, u \rangle$ for some $j \in J \cap T_2$, and we can repeat the argument in Lemma 1.6 to yield $\langle z \rangle \leq N_X(K)$ whence $z \sim_G uv$. Following the proof of Lemma 3.6 we have that G contains a subgroup G_0 of index two with $uv \in G - G_0$. If $N = N_G(\langle z_1, z_2 \rangle) \cap G_0$ then $N/\langle z_1, z_2 \rangle \cong U_6(2) \cdot Z_3$ and $N \cap C_G(\langle z_1, z_2 \rangle)$.

We will prove that $C(x) \cap G_0 \subseteq N$ for any involution $x \in N$. Note that N has 5 classes of involutions with representatives $z_1, z, z_1z, t, utz, tzzz, utzzz$ (which are not fused in G). Firstly, we observe that $O(C_G(x)) = 1$ for any involution $x \in N$ as $\langle z_1, z_2 \rangle \subseteq C_G(x)$ and $C_G(\langle x \rangle) \subseteq C_G(\langle z_1, z_2 \rangle)$. If $C_N(x) \subseteq C_G(\langle z_1, z_2 \rangle)$ then $C_N(x) \cap G_0 \subseteq N$ by Proposition 2. Thus as $H \cap G_0 \subseteq N$ and the argument of Lemma 2.6 may be repeated to yield $C_G(tz) \subseteq C_G(\langle t, z \rangle) \subseteq N \cap \langle uv \rangle$, it only remains to prove that $C(utz) \cap G_0 \subseteq N$.

Let $C = C(utz) \cap G_0$ and recall $C \cap N \subseteq N(E)$ with $C \cap N/E \cong E_9 \cdot SL(2, 3)$ (see Lemma 2.5). Take $\langle \sigma_1, \sigma_2, d \rangle$ to be a Sylow 3-subgroup of $C \cap N$ with $R = \langle \sigma_1, \sigma_2, d \rangle \subseteq C_G(\langle z_1, z_2 \rangle)$. From the structure of $PGL(3, 4)$, we see there are 3 classes of subgroups of order three in $N_G(E)$ with representatives $\langle \sigma_1, \sigma_2 \rangle$, $\langle c \rangle$, $\langle cd \rangle$. Further, we have

$C_E(\sigma_1 \sigma_2) = \langle z_1, z_2, z, u, t \rangle \cong E_{32}$ and $C(cd) \cap N_G(E) \cong Z_3 \times E_9 \cdot F_{21}$ (F21, a Frobenius group of order 21). It follows that $C_E(\sigma_1 \sigma_2)$ is a Sylow 2-subgroup of $C(\sigma_1 \sigma_2) \cap G_0$ and hence $\langle \sigma_1 \sigma_2 \rangle \sim_G \langle c \rangle$. If $\langle cd \rangle \sim_G \langle \sigma_1 \sigma_2 \rangle$ then $C(cd) \cap G_0$
would contain a Sylow 2-subgroup of order 32 which would be normalized by a nonabelian group of order 21. Since \(7 \mid |N_G(C_e(\sigma_1, \sigma_2))|\) we see that \(\langle cd \rangle \cong G \langle \sigma_1, \sigma_2 \rangle\).

We have proved that \(\langle \sigma_1, \sigma_2, d, c \rangle \) is a Sylow 3-subgroup of \(C\) by proving that \(N_c(R) \subseteq C \cap N\). Since \(N_c(R) \cap N\) has Sylow 2-subgroup \(\langle z_1, z_2, utz \rangle\) it follows that \(N_c(R) = C_c(R) \cdot (C \cap N)\). Further,

\[
N(\langle z_1, z_2, utz \rangle) \cap C_c(R) = R \times \langle z_1, z_2, utz \rangle
\]

whence \(O(C_c(R)) = R\), and Burnside's transfer theorem [3, Theorem 7.4.3] yields \(C_c(R) \subseteq N\).

We have shown therefore that \(\langle \sigma_1, \sigma_2, d, c \rangle\) is a Sylow 3-subgroup of \(C\). As \(N_e(\langle \sigma_1, \sigma_2, d, c \rangle)/\langle R, utz \rangle = Z_6\), Grün's transfer theorem [3, Theorem 7.4.2] yields that \(C\) has a normal subgroup \(C_0\) of index three with \(C_0 \cap N = G_0(\langle z_1, z_2 \rangle)\). It follows from Proposition 2 that \(C \subset N\) as required. This completes the proof that \(N\) contains the centralizer (in \(G_0\)) of each of its involutions. By [3, Theorem 9.2.1], it follows that \(G_0 = N\) or that \(N\) contains one class of involutions. Thus \(N = G_0\) and the lemma is proved.

Lemma 6.6. If \(N_G(E)/E \cong M_{23}\) then \(G \cong M(23)\).

Proof. If \(N_G(E)/E \cong M_{23}\), Lemma 6.3(ii) holds and \(z, z_1, zz_1\) have 1771, 253, 23 conjugates, respectively, in \(N_G(E)\). Further, as \(M_{23}\) has one class of involutions, \(G\) has precisely 3 classes of involutions. In addition (with appropriate choice of \(ut\)), we have \(z_1 \sim j \sim tz_1, z \sim ut, zz_1 \sim tz\) and if \(e \in E^0\) is not conjugate to one of these involutions in \(N_H(E)\) then \(e \sim z\) in \(N_G(E)\).

Since \(C_H(zz_1)/\langle zz_1 \rangle\) satisfies the hypotheses of Theorem 5, we have \(C_G(zz_1)/\langle zz_1 \rangle = M(22)\). As \(z_1 = [z_2, v], zz_1 \in C_G(zz_1)\), so \(C_G(zz_1)\) is isomorphic to the double cover of \(M(22)\) (see [9]). It follows that \(G \cong M(23)\) (see [12]) once we have proved that \(G\) is simple.

As \(z \sim_{\varphi} jz_1 \sim_{\varphi} jz_1, O(G) = 1\). Thus if \(N \lhd G\), \(N\) contains one of \(z, z_1, zz_1\). However, \(z^G \cap H = z_1^G \cap H = H\), while \(zz_1^G \cap H = H'\), so we conclude \(H \subset N\), whence \(N = G = N_G(T) = T\). This completes the proof of Lemma 6.6 and Theorem C.

6. The proof of Theorem D. In this section we will use the notation in the statement of Theorem D, and in addition we put \(J = O_2(H) = E_4 \times O_7 \times Q_6; T = J(u, t), \) a Sylow 2-subgroup of \(H; W = \langle t \rangle \times C_7(t), \) the unique elementary abelian subgroup of order 64 in \(T\); and let \(\langle \sigma_i \rangle\) be a Sylow 3-subgroup of \(K_i\), \(i \in \{1, 2, 3\}.\) Let \([u, z_2] = z_1\) so that \(Z(T) = \langle z, z_1 \rangle\) (recall \(O_2(K_3) = \langle z_1, z_2 \rangle \cap H\)). We suppose \(G \neq H \cdot O(G)\) and give the proof in a series of lemmas.

Lemma 7.1. The elements \(z, z_1, zz_1\) lie in distinct conjugacy classes in \(G\) and \(T\) is a Sylow 2-subgroup of \(G\).

Proof. As \(Z(T) = \langle z, z_1 \rangle\) and \(\varphi(T') = \langle z \rangle\), the lemma follows from Sylow's theorem and Burnside's lemma.
Lemma 7.2. Either $N_G(W)/W \cong \mathfrak{S}_7$ and G has precisely 3 conjugacy classes of involutions with
\[z \sim t \sim tz_1z \sim jz_1 \sim u \sim ut \sim z_1 \sim j \sim tz_1 \sim uz \sim z_1z \sim tz; \]
or $N_G(W)/W \cong Z_3 \cdot \Sigma_5$ with $\langle z_1, z_2 \rangle \triangleleft N_G(W)$, $|z^G \cap W| = 5$ and
\[z \sim t \sim z_1 \sim zz_1 \sim jz \sim jz_1 \sim tzz_1. \]

Proof. Lemma 6.3.

Lemma 7.3. If $N_G(W)/W \cong Z_3 \cdot \Sigma_5$ then $\langle z_1, z_2 \rangle \triangleleft G$ with $G/C_G(\langle z_1, z_2 \rangle) \cong \Sigma_3$ and $C_G(\langle z_1, z_2 \rangle)/\langle z_1, z_2 \rangle \cong PSp_4(3)$.

Proof. By Proposition 6, $C_G(\langle z_1, z_2 \rangle)/\langle z_1, z_2 \rangle \cong PSp_4(3)$. As in the proof of Lemma 6.5, $C_p(u)$ is a Sylow 2-subgroup of $C_G(u)$. Thus G contains a subgroup G_0 of index two (Proposition 3) with $G_0 \cap H = K_1 \cdot K_2 \cdot K_3(\langle t \rangle)$. Since $\langle z_1, z_2 \rangle$ is strongly closed in $T \cap G_0$, Proposition 2 yields
\[C_G(z_1) = O(C_G(z_1)) \cdot (N_G(\langle z_1, z_2 \rangle) \cap C_G(z_1)). \]
As $z \sim t$ and $t_2 \sim j \sim jz$ in $C_G(z_1)$, we have $[t, O(C_G(z_1))] = 1$ whence
\[[j, O(C_G(z_1))] = [jz, O(C_G(z_1))]. \]

It follows that $\langle z_1, z_2 \rangle \triangleleft G$ by [3, Theorem 9.2.1].

For the rest of this section we will assume $N_G(W)/W \cong \mathfrak{S}_7$.

Lemma 7.4. We have $C_G(zz_1) = U(\langle z_2 \rangle)$, $U/\langle zz_2 \rangle \cong U_4(3)$ (U is a covering group of $U_4(3)$) and $\langle z_2, zz_1 \rangle \triangleleft C_G(z_2)$ with $C_G(z_2)/\langle z_2, zz_1 \rangle \cong \text{Aut PSp}_4(3)$ (and $C_G(\langle z_2, zz_1 \rangle) \cong E_4 \times PSp_4(3)$).

Proof. The structure of $C_G(zz_1)$ follows from Lemma 5.4. As $\langle z, jz_1 \rangle$ normalizes $O(C_G(z_2))$ we have $O(C_G(z_2)) = 1$. In $C(z_2) \cap N_G(W)$ ($\cong E_{64} \cdot \Sigma_3$), z_2 has 5 conjugates while z_1z has only two, namely z_1z, zz_1z. It follows therefore from Proposition 2 that $\langle z_1z, z_2 \rangle \triangleleft C_G(z_2)$. Thus $C_G(z_2)/\langle z_1z, z_2 \rangle \cong \text{Aut PSp}_4(3)$ by Proposition 6 (as $C_G(z_2)$ contains a subgroup of index two, namely $C_G(\langle z_1, z_2 \rangle)$).

Lemma 7.5. The order of G is $2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$.

Proof. Let $a(g) = |(x, y)(xy)^n = g$ for some positive integer n where $x \sim g z, y \sim g zz_1|$ for any involution $g \in G$. We compute that $a(z) = 2^2 \cdot 3^3, a(z_1) = 3^6 \cdot 5$ and $a(z_1z) = 0$. The lemma follows from Thompson's order formula (see Lemma 2.7).

Lemma 7.6. We have $K = O_3(C_G(\sigma_1\sigma_2^{-1})) \cong E_{35}, C_G(\sigma_1\sigma_2^{-1})/K \cong \Sigma_6$ and
\[C_G(\sigma_1\sigma_2^{-1}) = \langle \sigma_1\sigma_2^{-1} \rangle \times (C_G(\langle tz \rangle) \cap C_G(\sigma_1\sigma_2^{-1})) \]
with $\langle tz, \sigma_1\sigma_2^{-1} \rangle \cong \Sigma_3$.

Proof. Put $S = \langle z_1, z_2, z_1, u \rangle$, a Sylow 2-subgroup of $C_G(\sigma_1\sigma_2^{-1}) \cap C_G(z_1)$ (recall $z_1 \sim g z_2$). As $S' = \langle z_1 \rangle, S$ is a Sylow 2-subgroup of $C_G(z_1)$. Further, $\langle z_1, z_2, uz \rangle \cong D_8$ with $z_1 \sim z_2 \sim z_1z_2$ in $C_H(\sigma_1\sigma_2^{-1})$ and $z_1 \sim uz \sim uzz_1$ in $C_G(\sigma_1\sigma_2^{-1}) \cap C_G(z_1)$.
Since $S = \langle z_1, z_2, uz \rangle$ contains 3 conjugates each of z and zz_1, Proposition 3 yields that $C_G(\sigma_1\sigma_2^{-1})$ has a subgroup of index two with Sylow 2-subgroup isomorphic to D_8. It now follows from Gorenstein and Walter [7] that $C_G(\sigma_1\sigma_2^{-1})/K \cong \Sigma_6$ (we know that $C_H(\sigma_1\sigma_2^{-1}) \cong E_9 \cdot (Z_2 \times \Sigma_4)$. $C_G(\sigma_1\sigma_2^{-1}) \cap C_G(zz_1) \cong E_3 \cdot (Z_2 \times \Sigma_4)$). We get $|K| = 3^5$ by applying the Brauer-Wielandt formula [20] to $K\langle z_1, z_2 \rangle$.

Recall that tz inverts $\sigma_1\sigma_2^{-1}$ and that $[t, S] = 1$. It follows that $C_G(tz)$ covers $N_G(\langle \sigma_1\sigma_2^{-1} \rangle)/K$ because tS contains precisely one conjugate of zz_1, namely tz.

Finally, $C_K(z) = \langle \sigma_1, \sigma_2 \rangle$ so $C_K(tz) \neq 1$. It follows that $C_K(tz) \cong E_8$ and the lemma is proved.

Lemma 7.7. The group G is a rank three extension of $C_G(zz_1)$, and zz_1^G is a class of 3-transpositions.

Proof. We have $|C_G(z_2) \cap C_G(zz_1)| = 2^8 \cdot 3^4 \cdot 5$ by Lemma 7.4, and by Lemma 7.6 there exists $g \in G$ with $|C_G(zz_1) \cap C_G(zz_f)| = 2^4 \cdot 3^6 \cdot 5$ (since $zz_1 \sim_G tz$). The lemma follows from Lemma 7.5 and $\langle tz, \sigma_1\sigma_2^{-1} \rangle \cong \Sigma_3$.

Lemma 7.8. We have $G \cong P \Omega(7, 3) = B_3(3)$.

Proof. Suppose $1 \neq N \triangle G$. Then $N \cap Z(T) \neq 1$ as each of z_1, z_1z_2, z_2 acts fixed-point free on $O(G)$. This implies that $W \subseteq N$ and hence $N_G(W) \subseteq N$. Thus $T \subset N$ and so $N = G$ as $N_G(T) = T$. It follows now from Fischer’s result [1] that $G \cong P \Omega(7, 3)$.

PART II

The following result is proved.

Theorem. Let G be a finite group, z an involution in G and suppose $H = C_G(z)$ satisfies:

(i) $J = O_2(H)$ is extra-special of order 2^{13} with $C_H(J) \subseteq J$;

(ii) H contains a normal subgroup K with $K/O_{2,3}(H) \cong U_4(3)$ and $O_{2,3}(H)/J \cong Z_3$.

Then one of the following holds:

(a) $G = H \cdot O(G)$;

(b) $H/K \cong Z_2$ and G is a simple group with $|G| = |M(24)|$;

(c) $H/K \cong Z_2 \times Z_2$ and $G \cong M(24)$.

The notation used will be as in Part I, and, in addition, P_{27} will denote a nonabelian group of order 27 and exponent 3.

1. Some properties of $U_4(3)$. Much of the information given below comes from Phan [18]. We will, in general, follow his notation. The group $U_4(3)$ is a simple group of order $2^7 \cdot 3^6 \cdot 5 \cdot 7$ and has only one class of involutions. For an involution i in $U_4(3)$ we have $C(i) = (\overline{L}_i \bullet \overline{L}_j)(\overline{u}, \overline{v})$ where $\overline{L}_i = \langle \overline{a}_i, \overline{b}_i \rangle \langle \overline{a}_i \rangle \cong SL(2, 3)$, $\langle \overline{a}_i, \overline{b}_j \rangle \cong Q_8$, $\langle \overline{a}_i \rangle \cong Z_3$ for $i = 1, 2$, and the relations involving $\overline{u}, \overline{v}$ are as follows:

\[
\overline{u}^2 = (\overline{uv})^2 = 1, \quad \overline{v}^2 = \overline{i} \quad (i.e. \langle \overline{u}, \overline{v} \rangle \cong D_8);
\]
\[
\overline{a}_1\overline{a}_2 = \overline{a}_2, \quad \overline{b}_1 = \overline{b}_2, \quad \overline{\sigma}_1 = \overline{\sigma}_2;
\]
\[
\overline{a}_1\overline{a}_1 = \overline{a}_i^{-1}, \quad \overline{b}_1\overline{b}_2 = \overline{a}_i\overline{b}_2, \quad \overline{a}_1 = \overline{a}_i^{-1}, \quad \overline{b}_2 = \overline{a}_i\overline{b}_2, \quad \overline{a}_1 = \overline{a}_i^{-1}, \quad i = 1, 2.
\]
The Sylow 2-subgroup $O_2(C(i))\langle \bar{u}, \bar{v} \rangle$ contains precisely two elementary abelian subgroups of order 16:

$$F_1 = \langle i, \bar{a}_1\bar{a}_2, \bar{b}_1\bar{b}_2, \bar{u} \rangle, \quad F_2 = \langle i, \bar{a}_1\bar{a}_2, \bar{b}_2\bar{a}_2\bar{b}_1, \bar{u}\bar{v} \rangle$$

with $N(F_i)/F_i \cong \mathbb{Z}_6$, $i = 1, 2$.

There are four classes of elements of order 3 in $U_4(3)$ with representatives \(\bar{a}_1, \bar{a}_1\bar{a}_2, \bar{a}_1\bar{a}_2^{-1}, \bar{a}_3\). For the Sylow 3-subgroup \(\langle \bar{a}_1, \bar{a}_2 \rangle\) of \(C(i)\) we have $N(\langle \bar{a}_1, \bar{a}_2 \rangle) = M \langle \bar{u}, \bar{v} \rangle$ where $M \cong E_{21}$ and $N(M)/M \cong \mathbb{Z}_6$. Further, $C(\bar{a}_1\bar{a}_2^{-1})/M \cong C(\bar{a}_1)/M \cong \mathbb{Z}_4$ and $N(\langle \bar{a}_1, \bar{a}_2 \rangle)/M \cong N(\langle \bar{a}_1, \bar{a}_2 \rangle)/M \cong \Sigma_4$. For \(\bar{a}_1\), we have $C(\bar{a}_1) = U_1 \cdot U_2$ where $U_1 \cong P_{27}$, $U_2 \cong P_{27}$, $N(\bar{a}_1) = C(\bar{a}_1)$ and $L_2\langle \bar{v} \rangle$ acts irreducibly on $U_1/\langle \bar{a}_1 \rangle$. Clearly $U_1\langle \bar{a}_1 \rangle$ is a Sylow 3-subgroup of $U_4(3)$ with centre $\langle \bar{a}_1 \rangle$. Finally, we may assume $C(\bar{a}_1) \subset U_1$, $N(\langle \bar{a}_1 \rangle) = C(\bar{a}_1)$ with $C(\bar{a}_1) \cong \mathbb{Z}_3 \times P_{27}$, and we note that $U_1(M)$ contains 2 (20) conjugates of \bar{a}_1, 48 (30) conjugates of each of $\bar{a}_1\bar{a}_2^{-1}, \bar{a}_1\bar{a}_2$ and 144 (0) conjugates of \bar{a}_3.

The Sylow 5- and Sylow 7-normalizers in $U_4(3)$ are Frobenius groups of orders 20, 21, respectively.

We now consider $U_4(3)\langle \bar{\pi}_1, \bar{\pi}_2 \rangle$ where $\bar{\pi}_1, \bar{\pi}_2$ are involutory (outer) automorphisms of $U_4(3)$ which satisfy the following relations:

$$(\bar{\pi}_1) = i \quad \text{where} \quad \bar{\pi}_3 = \bar{\pi}_1\bar{\pi}_2 \quad \text{and} \quad [\bar{\pi}_1, \bar{\pi}_2] = [\bar{\pi}_3, \bar{u}] = 1, \quad [\bar{\pi}_1, \bar{v}] = [\bar{\pi}_2, \bar{u}] = [\bar{\pi}_2, \bar{v}] = [\bar{\pi}_3, \bar{u}] = i. \quad \text{For} \quad i = 1, 2, \quad \langle \bar{\pi}_i, F_i \rangle \cong E_{32}, \quad \text{while if} \quad j \neq i \quad \text{and} \quad j \in \{1, 2, 3\}, \quad \langle \bar{\pi}_j, N(F_i) \rangle/F_i \cong \Sigma_6.$$

There are 6 classes of involutions outside $U_4(3)$ with representatives $\bar{\pi}_i, \bar{\pi}_i\bar{a}_1\bar{a}_2$ ($i = 1, 2$), $\bar{\pi}_3\bar{u}, \bar{\pi}_3\bar{a}_1$, which have centralizers in $U_4(3)$ isomorphic to $PSp_4(3)$, $E_{16} \cdot E_9 \cdot Z_4$, Σ_6 and $U_3(3)$, respectively. In addition, we note that we may assume

$$\bar{\pi}_1 \sim \bar{\pi}_1\bar{u}, \quad \bar{\pi}_1\bar{a}_1\bar{a}_2 \sim \bar{\pi}_1\bar{u} \sim \bar{\pi}_1\bar{v}, \quad \bar{\pi}_2 \sim \bar{\pi}_2\bar{u}\bar{v}i,$$

$$\bar{\pi}_2\bar{a}_1\bar{a}_2 \sim \bar{\pi}_2\bar{u}\bar{v} \sim \bar{\pi}_2\bar{v} \quad \text{and} \quad \bar{\pi}_3\bar{u} \sim \bar{\pi}_3\bar{v} \sim \bar{\pi}_3\bar{u}\bar{v}.$$

With regard to the elements of order 3, \bar{a}_1 centralizes $\bar{\pi}_1, \bar{\pi}_2$ and $\bar{\pi}_3\bar{a}_1$, $\bar{a}_1\bar{a}_2^{-1}$ centralizes $\bar{\pi}_1, \bar{\pi}_2, \bar{\pi}_2\bar{u}\bar{v}$ and $\bar{\pi}_3\bar{u}\bar{v}$; $\bar{a}_1\bar{a}_2$ centralizes $\bar{\pi}_1, \bar{\pi}_1\bar{u}, \bar{\pi}_2, \bar{\pi}_3\bar{u}$ while \bar{a}_3 centralizes conjugates of $\bar{\pi}_1\bar{a}_1\bar{a}_2$ ($i = 1, 2$) and $\bar{\pi}_3\bar{a}_1$.

Finally we remark that $U_4(3)\langle \bar{\pi}_1, \bar{\pi}_2 \rangle$ is the maximal subgroup of $Aut U_4(3)$ ($|Aut U_4(3)| = 2$) in which $\bar{\pi}_1\bar{a}_1\bar{a}_2 \sim \bar{\pi}_1\bar{a}_2$.

2. Some properties of H. We will use the notation of the theorem and note that if T is a Sylow 2-subgroup of H then $Z(T) = \langle z \rangle$ so T is a Sylow 2-subgroup of G. Let $\langle c \rangle$ denote a Sylow 3-subgroup of $O_{23}(H)$. Thus $C_k(c)/\langle c, C_j(c) \rangle \cong U_4(3)$. If $C_j(c) \neq \langle z \rangle$ then $C_j(c)$ and $\langle c \rangle, J$ are both extra-special groups of order $< 2^{11}$ (see Part I, Proposition 5). It follows from assumption (i) and [13, pp. 356, 357] that at least one of the orthogonal groups $O^+(10, 2)$ or $O^-(10, 2)$ must contain a subgroup isomorphic to $U_4(3)$. This is easily seen to be impossible by considering the Sylow 3-subgroups of these three groups. Therefore we have proved $C_j(c) = \langle z \rangle$. It follows immediately that J is the central product of 6 quaternion groups (or 6 dihedral groups) of order 8.
The “bar convention” will be used for \(C_k(c)/\langle c, z \rangle \) and this group will be identified with \(U_4(3) \) (as described in §1). As each element of order three in \(U_4(3) \) is conjugate to its inverse we may take \(\sigma_i \) (\(i = 1, 2, 3 \)), \(\sigma_1 \sigma_2^{-1}, \sigma_1 \sigma_2 \) to be elements of order three in \(C_k(c) \), and also assume each of these elements is conjugate to its inverse in \(C_k(c) \). As \(C(\sigma_i) \) acts irreducibly on \(O_3(C(\sigma_i))/\langle \sigma_i \rangle \) and there exists \(\bar{d} \in C(\sigma_i) - O_3(C(\sigma_i)) \) with \((\bar{d})^3 = \sigma_i \), it follows that \(\sigma_i \) lies in the centre of a Sylow 3-subgroup of \(C_k(c) \). Let \(U_1 \) be a Sylow 3-subgroup of \(O_3(C(\sigma_i) \cap C_k(c)) \) so that \(O_3(C(\sigma_i)) = \bar{U}_1 = U_1 \times \langle \bar{z} \rangle/\langle c, z \rangle \). If \(M \) is a Sylow 3-subgroup of \(O_3(C(\sigma_i) \cap C_k(c)) \) then \(M \cong E_3 \) and \(O_3(C(\sigma_1 \sigma_2)) = \bar{M} = M \times \langle \bar{z} \rangle/\langle c, z \rangle \). Finally we take \(t, u, w \) to be involutions in \(C_k(c) \), so that \(\langle c, \sigma_1, \sigma_2 \rangle \) is a Sylow 3-subgroup of \(C_k(t) \) and \(\langle t, u, v \rangle, \langle c, \sigma_1, \sigma_2 \rangle \) is \(\langle \sigma_1, \sigma_2 \rangle \).

Since we have assumed \(\sigma_1^* = \sigma_1^{-1}, (\sigma_1 c)^* = \sigma_1 c \), it follows that \(C_j(\sigma_1 c) \neq \langle z \rangle \) and \([\sigma_1, J] \) is the central product of 2, 4 or 6 quaternion groups. As \(\sigma_1 \in U_1 \) and \(\bar{U}_1 \langle \bar{c} \rangle \) acts irreducibly on \(\bar{U}_1 \langle \bar{c} \rangle \), it follows that \([\sigma_1, J] \) admits a group of automorphisms of order \(\geq 3^6 \). Hence \([\sigma_1, J] = J(3^6 | |O_3^1(2)) \), \(C_j(\sigma_1) = \langle z \rangle \) and \(C_j(\sigma_1 c) \cong C_j(\sigma_1 c) \cong Q_8 \cdot Q_8 \cdot Q_8 \). Let \(J_2 = C_j(\sigma_1 c), J_3 = C_j(\sigma_1 c) \) so \(J_2 = J_2 \cdot J_3 \) and put \(U_i = C_k(U_i) \cap U_1, i = 2, 3 \).

As \(U_2 \cap U_3 \cap Z(U_i) = 1 \), it follows that \(U_1 = U_2 \times U_3 \) and \(U_i \cong P_{27}, i = 2, 3 \). In particular, \(c \in U_i \) so \(c \in C_k(c) \). Further, \(C(U_i) \cap C_k(c) = U_i \times \langle \bar{z} \rangle \) and \(C_k(c)/\langle U_i, z \rangle \) is isomorphic to a Sylow 3-normalizer in \(PS_p(3) (= P_{27} : SL(2, 3)) \), \(i = 2, 3 \). By the Frattini argument, \(N_H(\langle \sigma_1, c \rangle) \) covers \(H/K \). If \(x \in N_H(\langle \sigma_1, c \rangle) - K \), replacing \(x \) by \(xv \) if necessary, we may assume \(x \) normalizes both \(\langle \sigma_1, c \rangle \) and \(\langle \sigma_1 c \rangle \) and also, therefore, \(J_i, U_i, i = 2, 3 \). Either \([x, J_2] \neq 1 \) or \([x, J_3] \neq 1 \) so for \(i = 2, 3 \) (or perhaps both), \(\langle x, C_k(c) \rangle = \langle U_i, z \rangle \) is isomorphic to a subgroup of \(\text{Aut} \, PS_p(3) \cong O_3^- (2) \). It follows immediately that \(x^2 \in C_k(\sigma_1) \) and \(H = K \) or \(H/K \cong Z_2 \) or \(Z_2 \times Z_2 \). We collect all these results in the following lemma.

Lemma 1. The subgroup \(J = O_2(H) \) is the central product of six quaternion (dihedral) groups and \(C_j(c) = C_j(\sigma_1) = \langle c \rangle \). We have \(K/J \cong C_k(c)/\langle c \rangle \) is isomorphic to a non-split extension of a group of order three by \(U_4(3) \) and either \(H = K \) or \(H/K \cong Z_2 \) or \(Z_2 \times Z_2 \). Finally if \(J_2 = C_j(\sigma_1 c), J_3 = C_j(\sigma_1 c) \) and \(U_1 = O_3(C_k(c)) \), then \(J_i \cong Q_8 \cdot Q_8 \cdot Q_8, U_i = C_k(U_i) \cap U_1 \cong P_{27}, i = 2, 3 \) and \(U_1 = U_2 \times U_3 \).

If \(\mu, \nu \) are elements of order 5, 7, respectively, in \(C_k(c) \), then from Lemma 1 it follows that \(\langle \mu \rangle, \langle \nu \rangle \) are Sylow 5-, 7-subgroups, respectively, in \(H \) and \(C_k(\mu) \cong Q_8 \cdot Q_8 \). The 48 elements of order three in \(U_i - Z(U_i), i = 2, 3 \), are all conjugate in \(N_k(\langle \sigma_1 \rangle) \) and are therefore conjugate to \(\sigma_1 \sigma_2 \) or \(\sigma_1 \sigma_2 \) in \(K \). We will assume that \(U_2 - \langle \sigma_1 c \rangle \) (only) contains conjugates of \(\sigma_1 \sigma_2 \). It follows immediately therefore that

\[
C_j(\sigma_1 \sigma_2^{-1}) = Q_8 \cdot Q_8 \cdot Q_8
\]

and we take \(C_k(\sigma_1 \sigma_2^{-1}) = C_j(\sigma_1 \sigma_2^{-1}) \cdot M \cdot \langle uv, t \rangle \cdot \langle \sigma_3 \rangle \).

Also, \(\sigma_1 \sigma_2 \sim_H \sigma_1 \sigma_2 \cdot c^i \) and \(C_j(\sigma_1 \sigma_2 \cdot c^i) \cong Q_8, i = \pm 1 \).
With this choice of elements we also have \(\sigma_1 \sigma_2 \sim_K \sigma_1 \sigma_2 c^i, \ i = \pm 1, \)
\[
C_j(\sigma_1 \sigma_2) = [\langle \sigma_1 \sigma_2^{-1} \rangle, J] \cong Q_8 \ast Q_8
\]
and
\[
C_K(\sigma_1 \sigma_2) = C_j(\sigma_1 \sigma_2) \cdot M \cdot \langle u, t \rangle.
\]
In the same way, \(\sigma_3 \sim_K \sigma_3 c^i, \ i = \pm 1, \)
\[C_j(\sigma_3) \cong Q_8 \ast Q_8 \ast Q_8 \quad \text{and} \quad C_K(\sigma_3) = C_j(\sigma_3) \cdot (C_K(\sigma_3) \cap U_1).\]
We have proved

Lemma 2. The group \(H \) has 7 classes of subgroups of order three with representatives \(\langle c \rangle, \langle \sigma_1 \rangle, \langle \sigma_1 c \rangle, \langle \sigma_1 \sigma_2^{-1} \rangle, \langle \sigma_1 \sigma_2^{-1} c \rangle, \langle \sigma_1 \sigma_2 \rangle, \langle \sigma_3 \rangle, \) where

\[C_j(\sigma_1 \sigma_2^{-1}) \cong Q_8 \ast Q_8 \ast Q_8, \ C_j(\sigma_1 \sigma_2^{-1} c) \cong Q_8 \]

and
\[C_j(\sigma_1 \sigma_2) \cong C_j(\sigma_3) \cong Q_8 \ast Q_8.\]

Further, we have \(C_j(\mu) \cong Q_8 \ast Q_8, \ C_j(\nu) = \langle z \rangle, \) where \(\langle \mu \rangle, \langle \nu \rangle \) are, respectively, Sylow 5-, 3-subgroups of \(H. \)

As \(t \) centralizes the subgroup \(\langle c, \sigma_1 \sigma_2^{-1} \rangle \) which acts faithfully on \(C_j(\sigma_1 \sigma_2) \) we have \([t, C_j(\sigma_1 \sigma_2)] = 1. \) If \(M_1 = [\langle t, w u \rangle, J] \times \langle c \rangle \cong E_{81} \) then \(M = M_1 \times \langle \sigma_1 \sigma_2^{-1} \rangle \) and \(C_H(t) \cap M_1 = \langle c, \sigma_1 \sigma_2 \rangle. \) Let \(\tau_1 \in M_1 \) with

\[
C_j(\tau_1) \cap C_j(\sigma_1 \sigma_2^{-1}) \cong Q_8 \ast Q_8 \ast Q_8
\]
(as \(C_H(\sigma_1 \sigma_2^{-1})/O_{2,3}(C_H(\sigma_1 \sigma_2^{-1})) \cong \hat{\mathbb{Z}}_4, \) \(M_1 \) acts faithfully on \(C_j(\sigma_1 \sigma_2^{-1}) \)). Now \(\tau_1 \) has 4 conjugates in \(\langle w u, t \rangle \cdot M_1 \) whence \(C_j(\sigma_1 \sigma_2^{-1}) \cdot M_1 \) is the central product of four subgroups each isomorphic to \(\text{SL}(2, 3). \) These four subgroups are permuted by \(C_H(\sigma_1 \sigma_2^{-1})/C_j(\sigma_1 \sigma_2^{-1}) \cdot M \) (as \(\hat{\mathbb{Z}}_4 \)) acting in the natural way. Hence \(C(t) \cap C_j(\sigma_1 \sigma_2^{-1}) \cong E_{32} \) and therefore \(C_j(t) \cong E_{16} \times Q_8 \ast Q_8. \) It follows that \(J \) contains 3 classes of involutions in \(K \) with representatives \(t, tz, tj \) (\(j \) an involution in \(C_j(\sigma_1 \sigma_2) \) and \(t \neq K tz \) as \((ut)^2 = 1 \) and \(v^2 \in \langle z \rangle \)).

In the same way as above we see that \([wu, C_j(\sigma_1 \sigma_2)] = 1 \) and \(C_j(\sigma_1 \sigma_2) \cap C_j(\sigma_1 \sigma_2^{-1}) \cong E_{32} \). Further, \(Z = Z(C_j(\langle w, t \rangle J)) \cong E_{81}, \) all involutions in \(Z \) are conjugate in \(\langle J, c \rangle \) and therefore \(C_H(Z) \) covers \(F_2J/J \) where \(F_2 = F_2J, z/J\langle c, z \rangle \cong E_{16}. \) Similarly \(C_H(Z) \) covers \(N_K(F_2)J/J \) so if \(j_2 \in Z \) then \(C_K(j_2)/C_j(j_2) \cong E_{16} \ast \hat{\mathbb{Z}}_4 \) (as this subgroup is maximal in \(U_d(3) \)).

Let \(j_1 \) be an involution in \(C_j(\sigma_1 c) = \langle z \rangle. \) Without loss we may take \(U_2(\sigma_2 c) \) to be a Sylow 3-subgroup of \(C_j(\sigma_1 c) \) and \(U_2(\sigma_2 c) \) is a Sylow 3-subgroup of \(C_H(j_1). \) It now follows by counting the number of involutions in \(J \) that \(|C_K(j_1)/C_j(j_1)| = 2^5 \cdot 3^4 \cdot 5 \) or \(2^6 \cdot 3^4 \cdot 5. \) The structure of \(U_d(3) \) immediately yields \(C_K(j_1)/C_j(j_1) \cong PSp_4(3). \) We have therefore determined all conjugacy classes of involutions in \(K. \)

Lemma 3. There are precisely two conjugacy classes of involutions in \(J \) with representatives \(j_1, j_2 \) where \(C_K(j_1)/C_j(j_1) \cong PSp_4(3) \) and \(C_K(j_2)/C_j(j_2) \cong E_{16} \ast \hat{\mathbb{Z}}_4. \) In \(K - J \) there are precisely three classes of involutions with representatives \(t, tz, tj \) where \(j \in C_j(\sigma_1 \sigma_2) = \langle z \rangle. \)
If \(H \neq K \), it follows from our assumptions and the lemmas above that \(H = K\langle \pi_1 \rangle \) or \(H = K\langle \pi_1, \pi_2 \rangle \) where \(\pi_i \in N_H(\langle c \rangle) \) and \(\pi_i(c, z)/\langle c, z \rangle = \tilde{\pi}_i, \ i = 1, 2, 3 \), correspond to the elements introduced in the previous section. In addition we may assume \(\pi_i^2 \in \langle z \rangle, i = 1, 2, \) and \(\pi_3^2 = \tau \).

Suppose \([\pi_i, c] = 1 \) for \(i = 1, 2 \) or 3. As we may assume \([\pi_i, \langle \sigma_1, \sigma_2 \rangle] = 1 \) and as \(C_K(\pi_i) \) covers \(C_K(\sigma_1)/O_{3,2}(C_K(\sigma_1)) \), it follows we may assume \(C(\pi_i) \cap U_1 = \langle U_2, c \rangle, C(\pi_i) \cap U_1 = \langle U_3, c \rangle \). Thus \(\pi_i^* = \pi_i t \) so \(i = 1 \) or 2; i.e. \(\pi_3 \) inverts \(c \). As \(U_2 \) acts irreducibly on \(J_3/\langle z \rangle, [\pi_i, J_3] = 1 \). Further \(\pi_i \) inverts an element \(\lambda \) in \(U_3 - \langle \sigma_1^{-1} c \rangle, \lambda \sim_K \sigma_1 \sigma_2^{-1} \). As \(\langle \lambda \rangle \sim \langle \lambda \sigma_1^{-1} c \rangle \sim \langle \lambda \sigma_1^{-1} c \rangle \) in \(U_3 \) and \(C(\lambda) \cap J_2 = Q_8 \), it follows that \([\pi_i, C(\lambda) \cap J_2] = 1 \) while \(\pi_i \) swaps the two quaternion groups \(C(\lambda \sigma_1^{-1} c) \cap J_2, C(\lambda \sigma_1 c^{-1}) \cap J_2 \). Thus

\[
C_J(\pi_i) \cong E_4 \times Q_8 \times Q_8 \times Q_8 \times Q_8,
\]

and we suppose \(j_1 \in C(J(\pi_i)) \). Then all involutions in \(Z(C_J(\pi_i)) - \langle z \rangle \) are conjugate to \(j_1 \) (in \(<c, J_3> \)) and \(C(j_1) \) covers \(C(\pi_i)/C_J(\pi_i) \cdot \langle c \rangle \cong PSp_4(3) \).

If \(<\mu> \) is a Sylow 5-subgroup of \(C_K(\pi_i) \) then \(C_5(\mu) \cap C_J(\pi_i) = Z(C_J(\pi_i)) \). Now if \(<\mu'> \) is a Sylow 5-subgroup of \(C_K(\mu_2) \) as \(<\pi_2, F_2, J_3>/J = E_{32} \) we may suppose \(j_2 \in C(J(\pi_2) \cap C(j_2') \). Since \(Z(C_J(\pi_i)) \) only contains conjugates of \(j_1 \) we have proved that \(\pi_2 \) inverts \(c \) also.

Finally, we will show \([\pi_i, c] = 1 \). From \(\S 1 \), \(\pi_1 u \) centralizes a Sylow 3-subgroup of \(N(\tilde{F}_1) \) in \(C(c)/\langle c, z \rangle \). However a Sylow 3-subgroup of \(N(\tilde{F}_1) \) contains conjugates of \(\tilde{\sigma}_1 \tilde{\sigma}_2, \tilde{\sigma}_3 \) and \(C_K(\sigma_1 \sigma_2) = C_J(\sigma_1 \sigma_2) \cdot M(\mu, t) \). Therefore \(c \in C(\pi_i) \cap C_K(\sigma_1 \sigma_2) \) because \(M \) does not contain conjugates of \(\sigma_2 \); i.e. a Sylow 3-subgroup of \(N_K(F_1J) \) cannot split over \(\langle c \rangle \).

If \(h \in H - K \) with \(h^2 \in \langle z \rangle \) and \(c^h = c^{-1} \), then \(C_J(h) \) is elementary abelian of order 64 or 128 depending whether \(h \sim_H hz \) or not. Since \(3^3 \mid |GL(5, 2)| \), we must have \(C_J(\pi) \cong C_J(\sigma_1 \sigma_2) \cong E_{128} \). Let \(\langle \sigma_1 \sigma_2^{-1}, \sigma_3 \rangle \) be a Sylow 3-subgroup of \(C_H(\pi_2 \mu \sigma) \), \(\sigma_3 \sim_K \sigma_3 \), and note that \(C_J(\sigma_3) \subset C_J(\sigma_1 \sigma_2^{-1}) \). Thus \(\pi_2 \mu \sigma \) acts fixed-point-free on \(O_{3,2,3}(C_J(\sigma_3))/O_{3,2}(C_H(\sigma_3)) \cong E_9 \) whence \(\pi_2 \mu \sigma \) normalizes the two quaternion subgroups in \(C_J(\sigma_3) \) and so \(\pi_2 \mu \sigma \sim_K \pi_2 \mu \sigma \). Similarly, \(\pi_2 \mu \sigma \) acts fixed-point-free on \(\langle \sigma_1 \sigma_2^{-1}, c \rangle \) and so normalizes the two quaternion subgroups in \(C_J(\sigma_1 \sigma_2) \). Thus \(\pi_2 \mu \sigma \cong C_J(\pi_3 \mu) \cong E_{64} \). These results are collected in the following lemma.

Lemma 4. If \(\pi_1 \in H \) then \([\pi_1, c] = 1 \) and \(C_J(\pi_1) \cong E_4 \times Q_8 \times Q_8 \times Q_8 \times Q_8 \). If \(\pi_2 \in H \) then \(\pi_2 \mu \sigma \) and if \(h \in \pi_2 K \) with \(h^2 \in \langle z \rangle \), \(h \) is conjugate to one of \(\pi_2 \), \(\pi_2 \mu \sigma \), \(\pi_2 \mu \sigma \mu \sigma \cdot C_H(\pi_2) \cong E_{128}, C_J(\pi_2 \mu \sigma) \cong E_{64} \). Finally, if \(\pi_3 \in H \) then \(\pi_3 \mu \sigma \) inverts \(c \) also and any element in \(\pi_3 K \) with square in \(\langle z \rangle \) is conjugate to one of \(\pi_3 \mu \sigma \), \(\pi_3 \mu \sigma \mu \sigma \), \(\pi_3 \mu \sigma \mu \sigma \mu \sigma \) whose \(C_J(\pi_3 \mu \sigma) \cong E_{128} \) and \(C_J(\pi_3 \mu \sigma) \cong E_{64} \).

3. The proof of case (b).

Lemma 5. Let \(G \) be a finite group which satisfies the assumptions of the theorem. Then \(z \sim_G j_1 \), and if \(z \sim_G j_2 \), then either \(H = K \langle \pi_2 \rangle \) or \(|H : K| = 4 \).

Proof. If \(x \) is an involution in \(J - \langle z \rangle \), \(z \sim_G x \) implies that \(O_2(C_H(x))/C_J(x) \) contains a normal elementary abelian subgroup of order 32 by [16, Proposition 7].
It follows from Lemma 3 and the structure of $N(F_2)$ given in §1 that $z \sim_G j_1$ and $z \sim_G j_2$ implies $\pi_2 \in H$. The lemma is proved.

The following simple result will be needed a number of times in this section.

Proposition. Let G be a finite group, z an involution in G and $H = C_G(z)$. Suppose that $P \neq 1$ is a p-subgroup of H (p an odd prime) which satisfies

(\ast) if $g^{-1}Pg \subset H$, $g \in G$, then there exists $h \in H$ so that $g^{-1}Pg = h^{-1}Ph$.

Then for any involution $x \in C_H(P)$, $x \sim_G z$ if and only if $x \sim_{N(P)} z$. If, in addition, $N_G(P) = N_H(P)C_G(P)$, then $x \sim_G z$ if and only if $x \sim_{C(P)} z$.

For the rest of this section, all results will be proved under the following assumptions.

Hypothesis 1. Let G be a finite group which satisfies the assumptions of the theorem. In addition, suppose $G \neq H \cdot O(G)$ and $H = K = K\langle \pi_2 \rangle$ or $H = K\langle \pi_3 \rangle$.

Lemma 6. We have $z \sim_{G} \pi_3u$ and $z \sim_{G} j_2$ if and only if $z \sim_{G} \pi_2$ and $j_1 \sim_{G} \pi_2z$.

Proof. If $H = K\langle \pi_3 \rangle$ then $z \sim_{G} j_2$ by Lemma 5. If $\langle \mu \rangle$ is a Sylow 5-subgroup of $C_H(\pi_3u)$ then by the proposition, $z \sim_{G} \pi_3u$ if and only if $z \sim \pi_3u$ in $C_G(\mu)$. For some $j' \in C_j(\mu) - \langle \pi_3u, z, j' \rangle$ is a Sylow 2-subgroup of $C_H(\mu) \cap C_G(\pi_3u)$. If $z \sim_{G} \pi_3u$ then $(j', j'z) \subset N_G(\langle \pi_3u, z, j' \rangle)$ whence $\langle \pi_3u, z, j' \rangle$ is a Sylow 2-subgroup of $C_G(\mu)$. Thus $z \sim_{G} \pi_3u$.

Now suppose $H = K\langle \pi_2 \rangle$. Without loss we take $\pi_2 \subset C_H(\mu)$ and observe that if $\pi_2^2 = 1$, $C_H(\mu)/\langle \mu \rangle$ is isomorphic to the centralizer of a central involution in ϑ_8 ($C_j(\pi_2) \cap C_j(\mu) \cong E_8$). Since $C_H(j_2)/O_2(C_H(j_2)) \cong \vartheta_6$, if we assume $j_2 \subset C_j(\mu)$ also we have $C_H(j_2)$ does not cover $N_H(\langle \mu \rangle)/C_H(\mu)$ whence j_2 has 12 conjugates in $C_H(\mu)$ (the other 6 are conjugate to j_1). If $C_G(\mu)$ has a subgroup K of index two then $K \cap C_H(\mu) = \langle \mu \rangle \times C_j(\mu) \cdot \langle e \rangle$ and $\langle z \rangle$ is weakly closed in $C_H(\mu)$ with respect to $C_G(\mu)$. On the other hand if $C_G(\mu)$ has no subgroup of index two we see easily that $\pi_2^2 = 1$. A result of D. Held [24] yields $C_G(\mu)/\langle \mu \rangle \cong \vartheta_8$, ϑ_9 or Hol(E_8) = $E_8 \cdot D_2(7)$. The last case cannot occur as $z \sim_{G} j_1$.

Thus we have proved that in $C_G(\mu)$, either z is not conjugate to any involution in $C_H(\mu) - \langle z \rangle$ or $z \sim j_2 \sim \pi_2$, say, and $j_1 \sim \pi_2z$. The corresponding result for G follows from the proposition.

Lemma 7. Either $\langle \sigma_1 \sigma_2 \rangle$ satisfies condition (\ast) of the proposition (i.e. $\langle \sigma_1 \sigma_2 \rangle^H = \langle \sigma_1 \sigma_2 \rangle^G \cap H$) or $\sigma_1 \sigma_2 \sim_{G} c$, $H = K\langle \pi_2 \rangle$ and

$z \sim_{G} j_2 \sim_{G} j \sim_{G} j_1 \sim_{G} \pi_2$, $j_1 \sim_{G} tz \sim_{G} \pi_2z$.

Proof. We begin by listing some properties of Sylow 2-subgroups of the centralizers of elements of order three in H. In the table, y is an element of order 3, Y is a Sylow 2-subgroup of $C_H(y)$, $Y/Y \cap J$ is given for $H = K\langle \pi_2 \rangle$ (and $H = K\langle \pi_3 \rangle$). Recall that $Y \cap J = \langle z \rangle$ or $Y \cap J$ is the central product of quaternion groups.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In addition we note that when \(H = K \), \(T_i \) \((i = 1, \ldots, 6)\) has order \(2^8, 2^4, 2^{11}, 2^7, 2^{10}, 2^5, 2^5\), respectively.

If \(H = K \) then \(<z> = T_3 \cap Z(T_3) \), while if \(H \neq K \), \(Z(T_3) \subseteq T_3 \subseteq <t, T_3 \cap J> \) whence \(<z> = Z(T_3) \cap [T_3, T_3] \). Thus \(T_3 \) is a Sylow 2-subgroup of \(C_G(\sigma_1\sigma_2) \) so \(\sigma_1\sigma_2^{-1} \sim_G \sigma_1\sigma_2 \sim_G \sigma_1 \), and, in addition, \(c \sim_G \sigma_1\sigma_2 \) if \(H = K \). Clearly \(\Omega_i(T_3) = <z> \) and \(Z(T_3) = <z> \) so \(T_3, T_6 \) are Sylow 2-subgroups of \(C_G(\sigma_1\sigma_2^{-1}) \), \(C_G(\sigma_3) \), respectively. In particular, \(c, \sigma_2^{-1}c \sim_G \sigma_1\sigma_2 \sim_G \sigma_3 \). Since \(Z(T_3) = <t, z> \), if \(x \) is an involution in \(T_3 \) then \(C_G(x) \cap T_3 \) contains an elementary abelian subgroup of order 16.

As \(F, \sigma_1 \), clearly contains no such subgroup, \(\sigma_1 \sim_G \sigma_1\sigma_2 \).

It remains to consider the case \(\sigma_1\sigma_2 \sim_G c \). We may assume here that \(t \sim_G z \) \((Z(T_0) = Z(T_3) = <t, z>)\), whence

\[
C_G(t) \cap C_G(\sigma_1\sigma_2)/<t, \sigma_1\sigma_2> \approx U_4(3).
\]

As \(U_4(3) \) has one class of involutions, \(z \sim \pi_3u \) or \(\pi_3ut \) in \(C_G(\sigma_1\sigma_2) \). This is impossible as \(\pi_3u \sim_H \pi_3ut \) and \(z \not\sim \pi_3u \) by Lemma 6. Thus we have \(H = K(\pi_2) \).

We note that if \(j \in T_3 \cap J \) then \(j \sim_H j_1 \) as \(C_H(j_1) \) only contains conjugates of \(\sigma_1\sigma_2^{-1}, \sigma_3 \). It follows therefore from \(z(<t> \sim j<\langle t \rangle) \) that \(z \sim tj \) and \(j_1 \sim tz \). Also from \(z(<t> \sim \pi_2<\langle t \rangle) \) we may assume \(z \sim \pi_2 \) and \(\pi_2t \sim j_1 \) (thus \(\pi_2t \sim_H \pi_2z \)). This completes the proof of the lemma.

Lemma 8. If \(z \sim_G j_2 \) then \(z^G \cap K = \{z\} \). In particular, \(H \neq K \).

Proof. If \(z \sim_G j_2 \) then \(<\sigma_1\sigma_2> \) satisfies \((*)\) of the proposition. It follows therefore from \(Z(T_3) = <t, z> \) and Burnside's lemma [13, IV, 2.5] that \(t \not\sim_G z \sim_G tz \). If \(z \sim_G tj \), Lemma 6 implies that \(z^G \cap T_3 \subseteq J \langle t \rangle \cap T_3 \). However

\[
<z^G \cap C(j) \cap T_3> = \langle tj \rangle \times C_j(j) \cap T_3 \approx Z_2 \times Z_2 \times D_8
\]

and so \(C(j) \cap T_3 \) is a Sylow 2-subgroup of \(C(j) \cap C_G(\sigma_1\sigma_2) \). Thus \(z^G \cap K = \{z\} \).

If \(H = K \), Glauberman's theorem [2] yields \(G = H \cdot O(G) \) against Hypothesis 1. The lemma is proved.

Lemma 9. We have \(H = K(\pi_2) \).

Proof. Suppose \(H = K(\pi_3) \) whence \(z \sim_G j_2 \). We will show \(z \sim_G \pi_3a_1 \), and hence \(z^G \cap H = \{z\} \) by Lemmas 6 and 8. However, this will contradict Glauberman's result [2]; i.e. we will have shown \(H \neq K(\pi_3) \).
We may assume $\pi_3a_1 \in T_1$, where $T_1/\langle z \rangle \cong Q_8 \rtimes Z_4$ in this case. Since $\langle \sigma_2 \rangle$ normalizes T_1 but does not centralize $T_1 \cap K \cong Z_2 \times Q_8$, $Z(T_1) = \langle \pi_3, z \rangle$ say with $\pi_3^2 = t$. By Lemma 8, $tz \not\sim_G t \sim_G t$ so T_1 is a Sylow 2-subgroup of $C_G(\pi_3)$. It follows immediately that $\langle \sigma_1 \rangle$ satisfies $(*)$ of the proposition as $\Omega^1(T_3) = \langle z \rangle$ whereas T_1 contains t or tz. In order to complete the proof of the lemma we only need to show $z \sim_G \pi_3a_1$ in $C_G(\sigma_1)$.

Now $C(\pi_3a_1) \cap T_1 = \langle \pi_3a_1, \pi_3, z \rangle$ so $\Omega^1(C(\pi_3a_1) \cap T_1) = \langle t \rangle$. Thus if $\pi_3a_1 \sim z$ in $C_G(\sigma_1)$ there exists $g \in C_G(t) \cap C_G(\pi_3)$ with $z^g \in T_1 - \langle z \rangle$. However $T_1/\langle t \rangle \cong E_{16}$ (because π_3a_1 is an involution, $a_1^2 = t$ also) whence $z\langle t \rangle$, $z^8\langle t \rangle$ are conjugate in $N(T_1)/\langle t \rangle$ by Burnside's lemma. This is clearly impossible so $H \neq K(\pi_3)$. It follows therefore from Lemma 8 that $H = K(\pi_2)$.

Lemma 10. We have $z \sim_G j_2$ if and only if $z \sim_G \pi_2uv$. Therefore we have $z \sim_G j_2$. Further, $c \sim_G \sigma_1\sigma_2$ and the fusion of involutions has been completely determined.

Proof. If $\sigma_3 \sim_G \sigma_1$ then there exists $g \in G$ with $T_3^g \subset T_6$. However $T_1 \cong Z_2 \times Z_2 \times Q_8$ so $T_3^g \cap T_6 \cap J$ is abelian of order 16, or isomorphic to $Z_2 \times Q_8$. Both of these cases are impossible ($T_6 \cap J \cong Q_8 \rtimes Q_8$). It follows that $\langle \sigma_3 \rangle$ satisfies condition $(*)$ of the proposition—see the proof of Lemma 7. Since T_6 is of type $G_2(3)$, we easily show $z \sim j_2$ in $C_G(\pi_3)$ if and only if $z \sim \pi_2uv$ (T_6 has at most three classes of involution in $C_H(\pi_3)$ with representatives $z, j_2, \pi_2uv, j_2 \sim_H j_2$). The first part of the lemma now follows from the proposition.

If $z \sim_G j_2$, it follows from Lemmas 6 and 8 that $z^G \cap H = \{z\}$. We have the same contradiction as in the previous two lemmas. It remains to show therefore that $z \sim_G j_2$ implies $\sigma_1\sigma_2 \sim_G c$.

Suppose to the contrary that $\sigma_1\sigma_2 \sim_G c$. By Lemma 7, $\langle \sigma_1\sigma_2 \rangle$ satisfies $(*)$ of the proposition, whence by Lemma 6 we have $z \sim \pi_2$ in $C_G(\sigma_1\sigma_2)$. Let $X = C_G(\sigma_1\sigma_2)$, $Y = C_H(\sigma_1\sigma_2)$ and $W = \langle \pi_3, t \rangle \times (C_G(\pi_3) \cap T_3) \cong E_{32}$. We easily see that T_3 contains only two elementary abelian subgroups of order 32, both of which are normal in T_3. Thus $z \sim \pi_2$ in $N_X(W)$. As above, $Z(T_3) = \langle t, z \rangle$ so t, tz lie in distinct conjugacy classes in X. We have $C_X(W) = W \times \langle \sigma_1\sigma_2 \rangle$, $N_Y(W)/C_X(W) = \Sigma_4$, and in $N_Y(W)$, $z(1), t(1), tz(1), j(6), tj(6), \pi_2(8), \pi_2z(8)$ ($j \in T_3 \cap J$) represent the classes of involutions in W, with the number of conjugates given in brackets. Since $27 | |GL(5, 2)|$, z cannot have 9 conjugates in $N_X(W)$ so z has 15 conjugates in $N_X(W)$: $z \sim \pi_2 \sim tj$. Replacing t by tz if necessary we have $iz \sim j \sim \pi_2z$ (recall $j \sim_H j_1 \sim_G \pi_2x$ by Lemma 6) and $\langle t \rangle \not\subset N_X(W)$. It now follows from Part I, Proposition 6, $z\langle t \rangle \sim j\langle t \rangle$ in $N_X(W)/\langle t \rangle$ and the fact that $\pi_2uv(J \cap T_3)$ does not contain involutions, that $C_X(t)/\langle t, \sigma_1\sigma_2 \rangle \cong U_4(3)$. However, this yields $z\langle t \rangle \sim_{CH} u\langle t \rangle$ so $z \sim x t$ or $z \sim x tz$, a contradiction. This completes the proof of the lemma.

Lemma 11. Let $F = C_f(t) \cap C_f(u)$ and $E = C_H(F)$. Then $E \cong E_{24}$ and $N_G(E)/E \cong M_{24}$, the Mathieu group on 24 letters. Further we have $C_G(j_1) \cap N_G(E)/E \cong \text{Aut } M_{22}$.
Proof. As \(u \sim t \sim ut \) in \(N_H(\langle \sigma_1 \sigma_2, c \rangle) \) and \(C_J(\langle u, t \rangle) \cap C_J(\sigma_1 \sigma_2) = E_b \), we have \(F = C_J(t) \cap C_J(u) = E_2 \). In the same way as in Part I, §3, we have \(|C_H(t)|: N_H(F) \cap C_H(t) = |C_H(u): N_H(F) \cap C_H(u)| = 3 \), from which it follows that \(N_H(F)/J \cong E_{16} \cdot Z_3 \cdot \Sigma_6 \). Hence \(E = C_H(F) \) covers \(O_2(N_H(F))/J \) whence \(E = E_{21} \).

Let \(T \) be a Sylow 2-subgroup of \(H \) so that \(C_H(t) \) covers \(T/J \). Suppose \(E^g \subseteq T \) for some \(g \in G \). We will show \(E^g = E \). Observe first that \(2^8 < |E^g \cap J| < 2^7, 2^4 < |E^g \cdot J| \cdot |J| < 2^5 \) and \(E^g \cap J \neq \emptyset \). If \(E^g \subseteq K \cap T \) then we have \(E^g \cap J \neq \emptyset \) or \(E^g \cap uJ \neq \emptyset \). Since \(C_j(t_j) \subseteq C_j(t) \) for any \(t_j \in J \), and as \(C_j(u) \cap C_j(t) \cong E_4 \times Q_8 \times Q_8 \), we have \(E^g \cap J = F \) and so \(E^g = E \). If \(E^g \not\subseteq K \cap T \) then \(E^g \) contains conjugates of \(\tau_2 \nu \), whence \(|E^g \cap J| = 64 \). It follows that \(E^g \cap J \neq \emptyset \) or \(E^g \cap uJ \neq \emptyset \) whence \(E^g \cap J \subseteq F \). However if \(e \in E^g \) and \(eJ \sim_h \tau_2 \nu J \), then as \(e \) inverts \(c, |C_c(e)| = 2^4 \). This contradiction means we have proved that \(E \) is weakly closed in \(T \) with respect to \(G \).

There are 1771 conjugates of \(z \) in \(E \) (the remaining 276 are conjugate to \(j_1 \)) and they are all conjugate to \(z \) in \(N_G(E) \) by the above remarks. Thus \(|N_G(E)/E| = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 = |M_{24}|. \) If \(R \) is a Sylow 23-subgroup of \(N_G(E) \) then \(C_E(R) = 1 \) from which it follows that \(N_G(E)/E \) is a simple group. A result of R. Stanton [28] yields \(N_G(E)/E \cong M_{24}. \) The last fact, that \(C_G(j_1) \cap N_G(E)/E \cong Aut M_{22}, \) follows from the structure of \(M_{24} \) (see [23], for example).

Lemma 12. We have \(C_G(j_1)/\langle j_1 \rangle \cong Aut M_{22} \) with \(j_1 \in C_G(j_1)' \).

Proof. Set \(C_j(\sigma_1 \sigma_2) = \langle r_1, s_1 \rangle \ast \langle r_2, s_2 \rangle \) where \(\langle r_1, s_1 \rangle \cong Q_8, i = 1, 2, \) are chosen so that we have

\[
\begin{align*}
r_1^u &= r_2, & s_1^u &= s_2, & r_1^s &= r_2^{-1}, & s_1^s &= r_2 s_2.
\end{align*}
\]

Let \(j = r_1 r_2, z_1 = s_1 s_2 \) and \(j_0 = s_1 r_2 s_2. \) It follows that we have

\[
\langle u, \tau_2 \rangle \subseteq C_H(j), \quad z_1^u = z_1, \quad z_1^\tau_2 = z_1 j, \quad j_0 = j_0 j, \quad j_0^\tau_2 = j_0.
\]

Recall that \(j_1 \sim_h j \sim_h z_1 \sim_h j_0 \) and that \(|O_{23}(C_H(\sigma_1 \sigma_2))| = 3^3 \). If \(D = \langle j, z_1, z \rangle \) then \(D \subseteq C_j(u) \cap C_j(t) = F \) so \([D, E] = 1 \). Also \([D, O_{23}(C_H(\sigma_1 \sigma_2))] = 1 \), so from the structure of \(PSp_4(3) \) we have \(D \triangleleft C_H(j) \). Clearly \(C_H(D)/C_J(D) \cong PSp_4(3) \) and \(C_H(D)/j_0 \tau_2 \cong C_H(j) \).

Let \(l \) be an involution in \(C_H(j) - \langle z, j \rangle \) and \(L \) a Sylow 2-subgroup of \(C_H(l) \cap C_H(j) \). Since \(Z(L \cap J) = \langle l, z, j \rangle \), it follows that \(Z(L) = \langle l, j, z \rangle \). If \(S \) is a Sylow 2-subgroup of \(C_H(j_0) \cap C_H(j) \) then as \(j_0 \not\in S' \) we have \(\langle z \rangle \subseteq S' \cap Z(S) \subseteq \langle j, z \rangle \). Thus \(S \) is a Sylow 2-subgroup of \(C_G(j_0) \cap C_G(j) \) (as \(j \sim_h jz \sim_h j_1 \)), and if \(j_0 \sim l \) in \(C_G(j) \) for \(l \in C_G(j) \), then \(j_0 \sim l \) in \(C_H(j) \).

In \(N_G(E) \cap C_G(j) \) we see that \(z \) (and hence \(jz \)) has 231 conjugates and \(z_1 \) has 44. Thus if \(e \in E \) with \(e \sim_G j_1 \) then \(e \) is conjugate to \(j, jz \) or \(z_1 \) in \(N_G(E) \cap C_G(j) \). If \(x \in (N_G(E) \cap C_G(j))' - E \) with \(x \sim_G j_1 \), then \(xe \sim_j' E \) where we may take \(j' \in C_j(u) \cap C_j(j) - E \) (\(M_{22} \) has only one class of involutions). As all involutions in \(uJ \) which are conjugate to \(j_1 \) in \(G \) lie in \(E \), it follows that \(x \) is conjugate to an involution in \(C_G(j) \).

Since \(N_H(E) \cap C_G(j)/E \cong E_{32} \cdot \Sigma_5 \) and \(C_K(\sigma_1 \sigma_2) \cap N_H(E) \cap C_G(j) = E_4(\sigma_1 \sigma_2)(\sigma_1 \sigma_2)(j_0) \), the structure of \(M_{22} \) yields \(j_0 \not\in (N_G(E) \cap C_G(j))' \). Combining
this with our work in the two paragraphs above we see that \(j_0 \) is not conjugate to any involution in \((N_G(E) \cap C_G(j))^\prime \). Thus Thompson’s transfer theorem [29, Lemma 5.38] yields that \(C_G(j) \) contains a subgroup \(X \) of index two with \(j_0 \notin X \).

It follows that \(C_H(j) \cap X/\langle j \rangle \) satisfies the assumptions of Part I, Theorem B. Thus either \(\langle j, z_1 \rangle \triangleleft X \) with \(X/\langle j, z_1 \rangle \cong U_6(2) \), or \(X/\langle j \rangle \cong M(22) \). The first case is impossible as \(\langle j, z_1 \rangle \triangleleft C_H(j) \), so we conclude \(X/\langle j \rangle \cong M(22) \). Finally, \(j \in C_H(j) \) and \(j_0 \) acts on \(C_H(j) \cap X \) as an outer automorphism whence \(C_G(j)/\langle j \rangle \cong \text{Aut } M(22) \).

Lemma 13. The group \(G \) has order \(2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29 = |M(24)| \).

Proof. Thompson’s order formula yields

\[
|G| = 2^{21} \cdot 3^3 \cdot 5 \cdot 7 \cdot a(j_1) + 2^{19} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot a(z)
\]

where, for any involution \(g \) in \(G \),

\[
a(g) = |\{(x, y) | (xy)^n = g \text{ for some positive integer } n, \text{ with } x \sim_G z, y \sim_G j_1\}|
\]

\[
a(z) = 2^2 \cdot 3^3 \cdot 7 \times 2,820,636.\]

In the computation of \(a(z) \), \(x, y \) will be involutions in \(H - \langle z \rangle \) with \((xy)^n = z \) for some \(n \) and \(x \sim_G z, y \sim_G j_1 \). Thus \(x \) is conjugate in \(H \) to one of

\[
j_2(2 \cdot 3^5 \cdot 7), \quad t(2^4 \cdot 3^4 \cdot 5 \cdot 7), \quad t(j(2^3 \cdot 3^6 \cdot 5 \cdot 7)),
\]

\[
\pi_2(2^3 \cdot 3^3 \cdot 7), \quad \pi_2uv(2^8 \cdot 3^5 \cdot 5 \cdot 7);
\]

while \(y \) is conjugate to either \(j_1(2^2 \cdot 3^3 \cdot 7), tz(2^4 \cdot 3^4 \cdot 5 \cdot 7) \) or \(\pi_2z(2^7 \cdot 3^3 \cdot 7) \), where the number in brackets is the number of conjugates of the involution in \(H \). Note that if either \(x \sim_G xz \) or \(y \sim_G yz \) then \((xy)^n = z \) implies \(n \) is odd.

Suppose at first that \(y \sim_H j_1 \). A computation yields that there are 1728 conjugates of \(j_2 \) in \(J - C_j(j_1) \) whence there are \(2^2 \cdot 3^3 \cdot 7 \times 1728 \) pairs \((x, y) \) with \(x \sim_H j_2 \). By the remark above we see there are no such pairs when \(x \sim_H t \) or \(x \sim_H \pi_1 \). We have \((jt)^2 = z \) if and only if \([j, y] = z \) and \(\langle j, y \rangle \subset C_j(t) \). There are 32 such \(y \)'s and so \(2^{10} \cdot 3^6 \cdot 5 \cdot 7 \) pairs \((x, y) \) with \(x \sim_H tj \) (\([tj, J] \) is elementary abelian so \(|tj| \leq 4 \)). For \(\pi_2uv \), \((\pi_2uv)^2 = z \) implies \(n = 4 \); i.e. \((\pi_2uv)^2 \) is of order four in \(J \). Now there is precisely one class (in \(H \)) of elements of order four in \(J \) with representative \(r_1 \) say, where \(C_H(r_1)/C_j(r_1) \cong E_{81} \cdot \Sigma_3 \). We compute that \(\pi_2uv \) inverts 64 elements of order four in \(J \) which are all conjugate under the action of \(C_H(\pi_2uv) \). There are 6 conjugates of \(y \) with \((\pi_2uv)^2 \) of order four so there are \(2^{15} \cdot 3^6 \cdot 5 \cdot 7 \) pairs \((x, y) \) with \(x \sim_H \pi_2uv \).

From the remarks above, if \((xtz)^n = z \) then either \(n = 1 \) and \(x = t \) or \(xtz = az \), \(a \) of odd order (\(\neq 1 \)). (In this latter case, \(xz \cdot tz = a, \langle xz, tz \rangle \) is a dihedral group of order \(2|\sigma| = 2n \).) If \(y_1, \ldots, y_m \) are representatives of the \(N_H(\langle a \rangle) \)-classes of \(\langle tz \rangle^H \) which invert \(a \), then

\[
I = \sum_{i=1}^{m} ([\sigma] - 1)|C_H(tz)|/|C_H(y_i) \cap N_H(\langle \sigma \rangle)|
\]

gives the number of involutions \(x \in H \) with \(xtz \sim_H az \). If \(a \sim_H a \mu \) then \(I = 2^{11} \cdot 3^2 \); if \(a \sim_H a_1a_2 \), \(I = 2^{10} \); if \(a \sim_H a_1a_2^{-1} \), \(I = 2^8 \); if \(a \sim_H a_3 \), \(I = 2^{11} \cdot 3 \); otherwise
\[I = 0. \text{ Hence there are} \]
\[2^4 \cdot 3^4 \cdot 5 \cdot 7(1 + 2^{11} \cdot 3^2 + 2^{10} + 2^8 + 2^{11} \cdot 3) \]

pairs \((x, y)\) with \(y \sim_H tz\).

Similarly if \(y \sim_H \sigma_2 z\) and \(\sigma \sim_H \epsilon\) then \(I = 2^7\); while if \(\sigma \sim_H \sigma_1 \sigma_2, I = 2^8 \cdot 3 \cdot 5\); otherwise \(I = 0\). Hence there are \(2^7 \cdot 3^3 \cdot 7(1 + 2^7 \cdot 2^8 \cdot 3 \cdot 5)\) pairs \((x, y)\) with \(y \sim_H \sigma_2 z\). Thus

\[a(z) = 2^2 \cdot 3^3 \cdot 7 \times 2,820,636. \]

\[a(j_1) = 3^5 \cdot 5 \cdot 7 \cdot 11 \cdot 11 \cdot 13 \times 3,608,577. \]

Again we will take \(x \sim_G z, y \sim_G j_1\) but this time with \((xy)^n = j\) for some \(n\). Clearly \(x, y \in C_G(j)\) and we will use the same notation as in Lemma 12. There are precisely three classes of involutions in \(M(22)\) and another three classes in \(\text{Aut } M(22) - M(22)\). In \(C_G(j) - \langle j \rangle\) we have four classes of involutions with representatives \(z, jz, z_1, j_2\), where \(j_2 \in C_G(j) - C_G(\sigma_1 \sigma_2)\) and \(j_2 \sim j_2 j, z_1 \sim z_1 j \in C_G(j)\). In \(C_G(j) - C_G(j)\) there are two classes of involutions with representatives \(j_0 j_0'\) where \(\langle j_0, z_1 \rangle \times \langle j \rangle = C_G(\mu) \cap C_G(j), \langle \mu \rangle\) a Sylow 5-subgroup of \(C_H(j)\). Further we have \(j_0 \sim j_0 j, j_0' \sim j_0 j\) in \(C_G(j)\). In addition, there is one class of elements of order four in \(C_G(j) - C_G(j)\) with square \(j\); namely \((j_0 \mu z_1)^2 = j\). Since \(C_G(j)\) is isomorphic to the centralizer of a 3-transposition in \(M(23)\), no element of \(C_G(j)\) squares to \(j\) (see [1]).

If \((xy)^n = j, n \text{ odd}\), then by the above remarks, \(x \sim z, y \sim j z\) in \(C_G(j)\). It is enough therefore to determine the number of conjugates of \(z \langle j \rangle\) in \(C_G(j)\) whose product with \(z \langle j \rangle\) has odd order. With the use of the character table for \(M(22)\) [25] and the properties of \(M(22)\) given in Part I, we compute that there are 1, \(2^{14} \cdot 3^3, 2^{10}, 2^{13} \cdot 5\) conjugates of \(z \langle j \rangle\) whose product with \(z \langle j \rangle\) is conjugate to 1, \(\mu, \sigma_1 \sigma_2^{-1}, \sigma_1 \sigma_2\), respectively. Hence if \(n\) is odd we get \(3^5 \cdot 5 \cdot 7 \cdot 11 \cdot 11 \cdot 13 \times 484,353\) pairs.

Now suppose \(n\) is even. By the remarks above we need only consider \(x, y \in N_G(\langle j_0 \mu z_1 \rangle) \cap C_G(j) - C_G(j_0 \mu z_1) \cap C_G(j)\). Let \(w = j_0 \mu z_1\) and we will use the relations given for \(C_H(\sigma_1 \sigma_2)\) in the proof of Lemma 12. In addition, as there exists \(g \in G\) with \(\sigma_1 \sigma_2^g = c\) and \(z^g = t\), we have \([u, v] = [u, \tau_2] = [v, \tau_2] = tz\). A computation yields that \(\langle t, j_0 \pi_2 u v \rangle (\approx E_4) \subseteq C_{E}(w)\) and that \(w_{z_1}\) inverts \(w\). Also, \(\langle C(u) \cap O_3(C_H(\sigma_1 \sigma_2)) = \langle \sigma_1 \sigma_2, \sigma \rangle = E_9\) is a Sylow 3-subgroup of \(C_H(w)\). Without loss we assume \([u, C_j(\sigma_1 \sigma_2 c)\] = 1 so that \(C_j(u) \cap C_j(\sigma_1 \sigma_2 c^{-1}) = E_8\). Thus

\[J_0 = C_j(u) \cap \langle \sigma_1 \sigma_2 \rangle, J \cong E_4 \times Q_8 \times Q_8 \]

and \(C_j(w) = J_0 \times \langle j \rangle\).

From the structure of \(\text{Aut } M_{22}\), we have \(C(wE)\) in \(N_X(E)/E\) is isomorphic to \(E_8 \cdot GL(3, 2)\). Further, \(C_E(j_0) = C_E(w) \cong E_7\) and \(w\) has 128 conjugates in \(wE, j_0\) has 16, while the remaining 112 involutions are conjugate to \(j_0'\) in \(C_G(j)\) (with \(j_0' \sim_G z\)). It follows that

\[C_H(w) = \langle w \rangle \times J_0(\sigma_1 \sigma_2, \sigma) \langle t, j_0 \pi_2 u v \rangle. \]

Let \(V = J_0 \langle t, j_0 \pi_2 u v \rangle\) and \(W = V \cap E\). We easily see that \(V \times \langle w \rangle\) is a Sylow 2-subgroup of \(C_G(w)\) and that \(V\) is of type \(\Omega_4(3)\) (see Part I, §6). Further, we can
show $N_G(W) \cap C_G(w)/W \times \langle w \rangle = L_2(7)$ (the argument is similar to Part I, Lemma 6.3). It follows that $C_G(w)/\langle w \rangle$ is simple and, hence, $C_G(w)/\langle w \rangle \cong PSp_6(2)$ by a result of Solomon [27]. Since u_1 centralizes $\langle \sigma_1, \sigma_2, \sigma \rangle$, assuming $u_1 \sim G_j$ (rather than u_1z) we have $N_G(\langle w \rangle) = \langle u_1, w \rangle \times P$, $P \cong PSp_6(2)$.

The group P has 4 classes of involutions with representatives z, z_2, z_2z, z_3 where $z_2 \in Z(J_0) - \langle z \rangle, j_1 \in \langle C_P(\sigma_2) \cap W \rangle - \langle z \rangle$ (so all four involutions lie in W). It follows that u_1z_2 has 5 classes of involutions with only u_1z_2 conjugate to j_1 (we assume z_2 has only 7 conjugates in W and $C_P(z_2)/W \cong \Sigma_3$). The coset $w \cdot u_1z_2 = j_0P$ also has 5 classes of involutions with only j_0, j_0z conjugate to j_1 (recall j_0E contains only 8 conjugates of j, and $j_0 \sim j_0z^2$).

Since $xy = w$ implies $x \sim yw$, the remarks above yield that if $xy = w$ then $x \sim u_1z$ and $y \sim j_0z$ or $x \sim u_1z_2$ and $y \sim u_1z_2$ in $N_G(\langle w \rangle)$. From the structure of $P \cong PSp_6(2)$ we compute that $\{z^g|g \in P\text{ and } z_2 \cdot z^g \text{ has odd order}\} = 1 + 2^7$ while $\{z^g|g \in P\text{ and } z_2 \cdot z^g \text{ has odd order}\} = 1 + 2^5$. Also, u_1z_2 has $2 \cdot 3^2 \cdot 7$ conjugates in $N_G(\langle w \rangle)$ while u_1z_2 has $2 \cdot 3^2 \cdot 7$ conjugates. Hence if n is odd we get

$$2^8 \cdot 3^5 \cdot 5 \cdot 11 \cdot 13 \times (2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 129 + 2 \cdot 3^2 \cdot 7 \cdot 33)$$

$$= 3^5 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \times 3,124,224 \text{ pairs.}$$

It follows that

$$a(j_1) = 3^5 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \times 3,608,577$$

and therefore that $|G| = |M(24)|$.

Lemma 14. The group G is simple.

Proof. We have $O(G) = 1$ because $z \sim G_j \sim G_jz$ and $O(H) = 1$. If $1 \neq N \lhd G$ then $z \in N$ since if T is a Sylow 2-subgroup of H (and hence of G), $Z(T) = \langle z \rangle$. Thus $H = \langle z^G \cap H \rangle \subseteq N$ and so $N = G$ (using $Z(T) = \langle z \rangle$ and the Frattini argument).

This completes the proof of the theorem in case (b).

4. The proof of case (c). Throughout this section we will assume:

Hypothesis 2. Let G be a finite group which satisfies the assumptions of the theorem. In addition, suppose that $G \neq H \cdot O(G)$ and $H = K\langle \pi_1 \rangle$ or $H = K\langle \pi_1, \pi_2 \rangle$.

Lemma 15. The group G has a subgroup G_0 of index two with $G_0 \cap H = K\langle \pi_2 \rangle$. Further G_0 is a simple group and $|G_0| = |M(24)|$.

Proof. Recall that $C_f(\pi_1) = E_4 \times Q_8 \times Q_8 \times Q_8$ and that $C_K(\pi_1)/C_f(\pi_1) = Z_3 \times PSp_4(3)$. Let $Z = Z(C_f(\pi_1)) = E_8$ so that $C_H(Z)$ covers $C_K(\pi_1)/C_f(\pi_1) \cdot \langle c \rangle$. Thus $Z - \langle z \rangle$ contains 6 conjugates of j_1. Let S denote a Sylow 2-subgroup of $C_H(\pi_1)$ and note that $Z(S) \subseteq \langle z, \pi_1 \rangle$. Suppose at first that $\pi_1^2 = 1$.

Since $z \in S' \cap Z(S) \subseteq Z$ we see that S is a Sylow 2-subgroup of $C_G(\pi_1)$. As $|S| < 2^{19}$ it follows that π_1 is not conjugate (in G) to any involution in J. Now let $T_3(\langle v \rangle)$ be a Sylow 2-subgroup of $N_H(\langle \sigma_1, \sigma_2 \rangle)$ with $u, \pi_1 \in T_3 \subseteq C_H(\sigma_1, \sigma_2)$. As $\langle t \rangle \lhd T_3$ and $[v, \pi_1] \in t\langle z \rangle$, $\langle t, z \rangle \subseteq (T_3 \cap C_H(t))$. Let $j \in C_f(u) \cap T_3$ as usual.
so that \(\langle u, C_j(j) \cap T_3 \rangle = \langle j, z \rangle \). Since \(C_H(j) \cap N_H(\langle \sigma_1 \sigma_2 \rangle) \) covers \(\langle v \rangle T_3 \cap T_3 \cap J \) we have \((C(j) \cap T_3 \langle v \rangle)' \subseteq \langle j, z \rangle \). Thus if \(l \) is any involution in \(J \) and \(L \) is a Sylow 2-subgroup of \(C_H(l) \) we have \(l \in L' \). It follows immediately that \(l \sim_G \pi_1 \).

If \(\pi_1^2 \neq 1 \) then \(\pi_1^2 = z \), so \(\langle \pi_1 r \rangle^2 = 1 \) where \(r \) is an element of order 4 in \(C_j(\pi_1) \). We compute that \(C_H(\pi_1 r) \) has Sylow 2-subgroup \(S_0 \) of order 214 if \(H = K(\langle \pi_1 \rangle), 2^{15} \) if \(|H : K| = 4. \) In either case \(Z(S_0) \subset \langle \pi_1, r, Z \rangle \) whence \(z \in S_0 \cap \Omega_1(Z(S_0)) \subset Z \). It follows that \(S_0 \) is a Sylow 2-subgroup of \(C_G(\pi_1 r) \) and that \(\pi_1 r \) is not conjugate (in \(G \)) to any involution in \(K \).

We will now show that \(\pi_1 \) (or \(\pi_1 r \)) is not conjugate to any involution in \(K(\langle \pi_1 \rangle) = K \). Let \(l \) be an involution in \(K(\langle \pi_1 \rangle) = K \) and \(L \) a Sylow 2-subgroup of \(C_H(l) \). If \(z \sim_G j_2 \) then there exists \(g \in N_G(\langle z, j_2 \rangle) \) with \(C_j(j_2) \cong \langle j, z \rangle \), \(L' \cap Z(L) = \langle z \rangle \). Thus if \(L \) is not a Sylow 2-subgroup of \(C_G(\langle \pi_1 \rangle) \) then \(l \) is conjugate to an involution in \(J \). Hence \(l \sim_G \pi_1 \) and if \(l \sim_G \pi_1 r \) then \(l \sim_H \pi_2 \) or \(\pi_2 z \) (as \(C_H(\pi_2 \nu v) \) has Sylow 2-subgroup of order 214). However, as \(z \not\subset L \) \(Z(L) = \langle z \rangle \) in this case we must have \(l \sim_H \pi_1 r \), which is impossible.

By Thompson's transfer theorem \([29]\) we have that \(G \) contains a subgroup \(G_0 \) of index two with \(G_0 \cap H = K \), \(K(\langle \pi_1 \rangle) \). The lemma now follows from our results in \(\S 3 \).

Lemma 16. We have \(\pi_1^2 = 1 \) and \(C_G(\pi_1) \cong Z_2 \times M(23) \).

Proof. From the proof of Lemma 6, \(C_G(\mu) \subset G_0 \langle \mu \rangle \cong \mathbb{S}_6 \) or \(\mathbb{S}_9 \). Since \(\pi_1 \) acts as an outer automorphism on \(C_G(\mu) \), we have \(C_G(\mu) \langle \mu \rangle \cong \mathbb{S}_8 \) or \(\mathbb{S}_9 \). As \(c \sim_G \sigma_1 \sigma_2 \), \(C_G(c) / C_G(\langle \sigma_2 c \rangle) = Z_2 \times U_4(3) \times Z_2 \) whence \(C_G(c) \cap C_G(\mu) \) contains a four group, i.e. \(C_G(\mu) / \langle \mu \rangle \cong \mathbb{S}_9 \). Thus \(\pi_1^2 = 1 \) and \(C_G(\pi_1) \) covers \(H / K \). It follows that \(C_H(\pi_1) \cap G_0 \) satisfies the assumptions of Part I, Theorem C. Replacing \(\pi_1 \) by \(\pi_1 z \) if necessary we have \(C_G(\pi_1) \cap C_G(\mu) \cong Z_2 \times Z_4 \times \mathbb{S}_7 \). Hence \(\langle z \rangle \) is not weakly closed in \(C_G(\pi_1) \) and \(C_G(\pi_1) \) does not contain a normal four group. It follows immediately from Theorem C of Part I that \(C_G(\pi_1) \cong Z_2 \times M(23) \).

Lemma 17. The conjugacy class \(\pi_1^G \) is a class of 3-transpositions and \(G \cong M(24) \).

Proof. From the character table for \(M(23) \) given in \([26]\) we see that the only proper subgroups of \(M(23) \) of index less than \(|G : C_G(\pi_1)| = 306,936 \) have index 31,671 (= \(3^4 \cdot 17 \cdot 23 \)), 137,632 (= \(2^5 \cdot 11 \cdot 17 \cdot 23 \)), 275,264 (= \(2^6 \cdot 11 \cdot 17 \cdot 23 \)). Hence by Lemma 16 we see that there exists \(g \in G \) (in fact we may take \(g \in J - C_G(\pi_1) \)) with \(C_G(\pi_1) \cap C_G(\pi_1^g) \) of order 2 \(\cdot |M(22)| \) and index 31,671 in \(C_G(\pi_1) \). From the remarks before Lemma 4, there is an element \(\lambda \sim_H \sigma_1 \sigma_2^{-1} \) which is inverted by \(\pi_1 \) and such that \(C_G(\pi_1) \supset C_G(\lambda) \). Thus \(C_H(\pi_1) \cap C_H(\lambda) = \Lambda \) where \(C_H(\lambda) = \langle \lambda \rangle \times \Lambda \) (because \(\pi_1 \sim_H \pi_1 z \)). As any Sylow 2-subgroup of \(\Lambda \) has centre equal to \(\langle z \rangle \), it follows that \(|C_G(\pi_1) \cap C_G(\pi_1^g)| = 2^{13} \cdot n \), \(n \) odd.
We have shown therefore that G is a rank three extension of $C_G(\pi_1)$, whence π_1^G is a class of 3-transpositions. Since $G'' = G_0 = G_0$ by Lemma 14, Fischer's result [1] yields $G \cong M(24)$.

The proof of the theorem is now complete.

PART III

The following result is proved.

Theorem. Let G be a finite group, z an involution in G and suppose $H = C_G(z)$ satisfies:

(i) $J = O_2(H)$ is extra-special of order 2^{13} with $C_H(J) \subseteq J$;
(ii) H contains a normal subgroup K with $K/O_{2,3}(H) \cong U_4(3)$ and $O_{2,3}(H)/J \cong Z_3$;
(iii) $G \neq H \cdot O(G)$ and $|H : K| = 2$.

Then $G \cong M(24)'$.

The following corollary is an immediate consequence of Part II.

Corollary. Suppose G, H, z satisfy only (i) and (ii) of the theorem. Then one of the following holds:

(a) $G = H \cdot O(G)$;
(b) $H/K \cong Z_2$ and $G \cong M(24)'$;
(c) $H/K \cong Z_2 \times Z_2$ and $G \cong M(24)$.

Throughout this part we will assume conditions (i), (ii), (iii) hold. In Part II we have shown that under these hypotheses G is a simple group of the same order as $M(24)'$ and that if j is an involution in G with $j \varpropto_G z$, then $C_G(j)$ is a nonsplit extension of a group of order two by Aut $M(22)$. We will begin by listing properties of G which were determined in Part II, and as far as possible we will use the same notation.

Let T be a Sylow 2-subgroup of H with $T \cap C_H(j)$ a Sylow 2-subgroup of $C_G(j)$. Let E be the unique elementary abelian subgroup of order 2^{11} in T so that $C_G(E) = E$ and $N_G(E)/E \cong M_{24}$ (the Mathieu group). Put $C = C_G(j)$ so that $C/\langle j \rangle \cong M(22)$. In $N_G(E), j$ has 276 conjugates in E which break up into 4 classes in $N_C(E)$ with representatives j (1 conjugate), z_1 (22), $z_1 j$ (22) and $j z$ (231). We have $z_1 \sim z_1 j$ in $C_G(j) \cap N_G(E)$, and $N_C(E)/E \cong M_{22}$.

For the element $\sigma_1 \sigma_2^{-1}$ of order three we have that

$$C_H(\langle \sigma_1 \sigma_2^{-1} \rangle) = C_J(\sigma_1 \sigma_2^{-1} \cdot M \cdot \langle t, uw, \pi_2 \rangle \langle \sigma_3 \rangle$$

where

$$C_J(\sigma_1 \sigma_2^{-1}) = Q_8 \ast Q_8 \ast Q_8 \ast Q_8, \quad M \cong E_3,$$

and

$$C_H(\langle \sigma_1 \sigma_2^{-1} \rangle)/O_{2,3}(C_H(\langle \sigma_1 \sigma_2^{-1} \rangle)) \cong Z_2 \times \Omega_4.$$

In addition,

$$N_H(\langle \sigma_1 \sigma_2^{-1} \rangle) = C_H(\langle \sigma_1 \sigma_2^{-1} \rangle) \cdot \langle uz \rangle, \quad uz \sim_G j,$$

$$N_H(\langle \sigma_1 \sigma_2^{-1} \rangle)/O_{2,3}(C_H(\langle \sigma_1 \sigma_2^{-1} \rangle)) \cong Z_2 \times \Sigma_4.$$
and \(N_H(\langle \sigma_1, \sigma_2^{-1} \rangle) - H(\sigma_1, \sigma_2^{-1})\) contains precisely one class of involutions (with representative \(uz\)) which are conjugate to \(j\) in \(G\). Finally,

\[C_H(uz) \cap H(\sigma_1, \sigma_2^{-1}) = C_j(\langle uz, \sigma_1, \sigma_2^{-1} \rangle) \cdot M_0 \cdot \langle t, \pi_2, uv \rangle\]

where

\[C_j(\langle uz, \sigma_1, \sigma_2^{-1} \rangle) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times Q_8 \times Q_8, \quad M_0 = C_H(uz) \cong E_{2g}\]

and in fact \(C_H(uz) \cap H(\sigma_1, \sigma_2^{-1})\) is isomorphic to the centralizer of an involution in \(\Omega_2(3)\).

Lemma 1. We have \(\Omega_1 = C_G(uz) \cap C_G(\sigma_1, \sigma_2^{-1}) = \Omega_2(3)\) and \(C_G(\Omega_1) = \langle uz, \sigma_1, \sigma_2^{-1} \rangle \cong \Sigma_3\).

Proof. As \(C_G(\sigma_1, \sigma_2^{-1}) \supset C_G(\sigma_3)\) and \(z \sim \pi_2 u v\) in \(C_G(\sigma_3)\) (see Part II, Lemma 10), Theorem D of Part I yields that \(\Omega_1 \cong \Omega_2(3)\). To complete the proof it is enough to show that \(C_H(\Omega_1) = \langle z, uz, \sigma_1, \sigma_2^{-1} \rangle\). Now \(\Omega_1 \cap H \supseteq \langle c, \sigma_1 \sigma_2^{-1} \rangle\) and we may assume \(j_2 \in \Omega_1 \cap J (j_2 \sim_G z)\). The structures of \(C_H(\langle c, \sigma_1 \sigma_2^{-1} \rangle)\) and \(C_H(j_2)\) now give the required result.

1. **The construction of the subgroup** \(X = M(23)\). Let \(N_C(E) \subset L \subset N_G(E)\) with \(L/E \cong M_{23}\) and \(j \sim_L z_1\), \((L\text{ exists because of the structure of } M_{24} - \text{see [23]})\). As \(j\) has 23 conjugates in \(L, j \sim_L z_1 j\). Put \(C_1 = C_G(z_1)\) and note that \(z_1^C, j^C\) are classes of 3-transpositions in \(C_1, C\), respectively, with \(z_1^C \sim_G \sigma_1, \sigma_2^{-1}\) or \([z_1^C, z_1^C] = 1\) for all \(x \in C\).

Take \(k \in C_1 - C\) with \(k \sim_G j\) (thus \(k^C \sim_G \sigma_1, \sigma_2^{-1}\)). We now define \(\mathfrak{g} = \{j\} \cup z_1^C \cup k^C\) and let \(X = N_G(\mathfrak{g})\). By Lemma 1, \(\Omega = C_G(k) \cap C_G(j) = C_G(k) = \Omega_2(3)\); and we also have \(C_G(z_1) = C_G(z_1) \cap C_G(j)\). It follows therefore that

\[\mathfrak{g} \supseteq \mathfrak{g} \supseteq \{ g \in G | g \sim_G j, g \sim_G \sigma_1, \sigma_2^{-1} \}\]

(1)

Since \(N_H(\langle \sigma_1, \sigma_2^{-1} \rangle)\) contains a Sylow 2-subgroup of \(N_G(\langle \sigma_1, \sigma_2^{-1} \rangle)\) and \(N_H(\langle \sigma_1, \sigma_2^{-1} \rangle) - H(\sigma_1, \sigma_2^{-1})\) contains precisely one class of involutions conjugate to \(j\) in \(G\),

\[\mathfrak{g} \supseteq \mathfrak{g} \supseteq \{ g \in G | g \sim_G j, g \sim_G \sigma_1, \sigma_2^{-1} \}\]

(2)

(Note that \(\mathfrak{g} = \mathfrak{g} \cap \mathfrak{g}\) for \(s, s_1 \in C_G(j) - C\).)

We prove next that

\[xz_1 \sim_G \sigma_1, \sigma_2^{-1} \quad \text{for all } x \in \mathfrak{g} - C_1\]

(3)

If \(x \in z_1^C\) this is clear as \(z_1^C\) is a class of 3-transpositions in \(C\). Suppose that \(x \in k^C\). From the character table of \(M(22)\) (see [25]) we have

\[C = \Omega(C_1 \cap C) \cup \Omega w(C_1 \cap C)\]

where \(w \in N_C(E) - C_1, w^2 \in C_1\) and \(z_1^C = z^2 \not\in C_1\). (Since \(k \not\in C_G(E) = E\) and \(N_C(E)/E \cong M_{22}\) is 2-transitive on the 22 conjugates of \(z_1\) in \(N_C(E)\), we can find such a \(w\).) Hence \(k^C = k(C_1 \cap C) \cup k w(C_1 \cap C)\) and it is enough to show that \(k^w z_1 \sim_G \sigma_1, \sigma_2^{-1}\).

As \(k \in C_1, k^w \in C_2 = C_G(z_2)\) and \([k^w, z_1] \not= 1\). Now \(k^w j \sim_G \sigma_1, \sigma_2^{-1}\) also as \(j^C_2\) is a class of 3-transpositions in \(C_2\) and \(j \sim z_1\) in \(L \cap C_2\). Thus \(3\) is proved.
Choose $g \in C_1 \cap N_C(E) - C$ with $g^2 \in C$ and let
\[z_3 = j^g(\{C_1 \cap N_C(E); C_1 \cap N_C(E)\} = 2 \cdot 11). \]

We will show that $g \in X = N_G(\mathcal{Y})$. From the structure of L we can find $y \in N_C(E)$ with $z_3^y = z_3$, whence $[x, z_3] = 1$ or $xz_3 \sim_G \sigma_1 \sigma_2'^{-1}$ for all $x \in \mathcal{Y}$ by (3).

As $z_3^C \cap C_i \subseteq z_3^C = z_3^C$ and $j_i \cap C = \{j\} \cup z_3^C \cap C_i \cup k \cap C_i$, it follows that $j_i \cap C = z_3^C \cap C_i \cap C - \{z_3\}$, whence $(z_3 \cap C_1)^y = z_3 \cap C_1$.

Let $x \in z_3 \cap C_1$. Thus $xz_3 \sim_G \sigma_1 \sigma_2'^{-1}$ by (3), so $x^g z_3 \sim_G \sigma_1 \sigma_2'^{-1}$ also. If $[x, z_3] = 1$, $x^g \in C$ whence $x^g \in \mathcal{Y}$ as required. Therefore we will assume $xz_3 \sim_G \sigma_1 \sigma_2'^{-1}$ so $x^g \sim_G \sigma_1 \sigma_2'^{-1} \sim_G x^g z_3$. It follows that $\langle x^g, j, z_3 \rangle \cong \Sigma_4$ with $x^g z_3$ of order four.

Suppose $x^g \notin \mathcal{Y}$. By (2) we have $x^g \in \mathcal{Y}$, $s \in C_G(j) - C$. Choose s so that $z_3^s = z_3^j$ (see the remarks above). Let $x^g = x^s_i$ for some $x_i \in \mathcal{Y}$. Then $[z_3^s, x_i] = 1$ or $x_i z_3 \sim_G \sigma_1 \sigma_2'^{-1}$ by (3) so $(x_i z_3)^s$ has order two or three. However $(x_i z_3)^s = x^g z_3 j$ has order four, a contradiction. Thus $x^g \notin \mathcal{Y}$ and therefore $g \in N_G(\mathcal{Y}) = X$.

We have proved that $C \subset X \subset G$. From above we have $C = C_x(j)$. Since $j \sim_G z_3 \sim_G j z_3$, $O(X) = 1$. Let N be a minimal normal subgroup of X. From $C/\langle j \rangle \cong M(22)$ and $j \in C'$ it follows that $j \in N$. Hence $C \subset N$ as $j \sim_X z_3$. As N is minimal normal, the structure of C yields that N is simple whence $N \cong M(23)$ by a result of D. Hunt [12]. Now $T \cap C$ is a Sylow 2-subgroup of N with $Z(T \cap C) = \langle z, j \rangle$. Finally, as $z, j, j z$ have nonisomorphic centralizers in N (see [12] or Part I) the Frattini argument yields $N = X$. We have proved

Lemma 2. The group G contains a subgroup X isomorphic to $M(23)$.

2. Some properties of X.

Lemma 3. We have $G = X \cup XsX \cup XrX$ where $X \cap X^s = C$ and $|X : C| = 31,671$ while $D = X \cap X^r$ satisfies $|X : D| = 275,264$.

Proof. From the character table for $M(23)$ in [26], we see that X has only four permutation characters of degree $< 306,936 = |G : X|$: \[\varphi_0(1) = 1; \quad \varphi_1(1) = 31,671; \quad \varphi_2(1) = 137,632; \quad \varphi_3(1) = 275,264. \]

If φ is the permutation character for the representation of G on the cosets of X, then by considering values of $\varphi, \varphi_i (i = 1, 2, 3)$ on involutions we get $\varphi = \varphi_0 + \varphi_1 + \varphi_3$. The lemma follows.

Lemma 4. Let D be a subgroup of X of index $275,264$. Then D contains precisely two classes of involutions with representatives z ($|C_D(z)| = 2^{12} \cdot 3^5$) and $j z$ ($|C_D(jz)| = 2^{10} \cdot 3^5 \cdot 5 \cdot 7$).

Proof. We first note that $|D| = 2^{12} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 13$ and φ_3 is the permutation character associated with D. From the character table, $\varphi_3(z) = 320, \varphi_3(jz) = 2816$ which yields $z_D = z_X \cap D$ and $|C_D(z)| = 2^{12} \cdot 3^5 \cdot j_X \cap D = \emptyset$ and $|C_D(jz)| = 2^{10} \cdot 3^5 \cdot 5 \cdot 7 \cdot n, 1 \leq n \leq 4$. It remains to prove that $n = 1$.

Let v be an element of order 7 in $C_D(jz)$. Then $C_X(v) = Z_7 \times \Sigma_5$ and $|N_X(\langle v \rangle); C_X(v)| = 6$.

From $\varphi_3(v) = 10$ it follows that $|C_D(v)| = 7 \times 12$ whence, as φ_3 vanishes on elements of order 42, $C_D(v) \cong Z_7 \times \Theta_4$. Hence all involutions which centralize an element of order 7 in D are conjugate in D. This yields $n = 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 5. There exists an involution \(d \sim x \) with \(d \in N_X(D) \) and \(C_D(d) = \Omega_7(3) \).

Proof. Without loss we may assume \(z \in D \). If \(M^* \) is a Sylow 3-subgroup of \(C_D(z) \) then \(M^* \) is a Sylow 3-subgroup of \(C_X(z) \). Since \(j^X \cap D = \emptyset \),

\[
[M^*, J] = J \cap D = Q_8 \cdot Q_8 \cdot Q_8 \cdot Q_8.
\]

Hence \(J \cap D - \{ z \} \) contains an involution \(j_2 \sim x \), whence a Sylow 2-subgroup of \(C_D(z) / C_D(z) \cap J \) must be elementary abelian of order 8 by Proposition 7 of [16]. The structure of Aut \(PSp_4(3) \) yields \(C_D(z) / C_D(z) \cap J \) is isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) by Proposition 7 of Part I. It follows from the structure of \(C_X(z) \) that there exists \(d \in N_X(C_D(z)) \) with \(t_z \sim d \) in \(H \cap X \) (\(t_z \sim_g J \) and \(N_X(M^*) \cap C_X(z) / \langle z, M^* \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2 \) see Part I). A computation yields that \(C_X(d) \cap C_D(z) \) is isomorphic to the centralizer of an involution in \(\Omega_7(3) \). Clearly \(O(C_D(d)) = 1 \), and as \(|C_D(d)| > |C_X(d)| \cdot |D| / |X| \), Part I, Theorem D yields \(C_D(d) = \Omega_7(3) \).

Let \(\langle \rho \rangle \) be a Sylow 7-, 13-subgroup, respectively, of \(C_D(d) \). Then \(C_X(\rho) = \mathbb{Z}_{13} \times \Sigma_3 \), \(C_D(\rho) = \mathbb{Z}_{13} \times \mathbb{Z}_3 \), \(C_D(\rho) \cap C_D(d) = \langle \rho \rangle \), and in each case \(N(\langle \rho \rangle) / C(\rho) = \mathbb{Z}_6 \) (see [25] and [26]). Thus \(d \) normalizes \(N_D(\langle \rho \rangle) \). Similarly it follows from \(C_D(d) \cap C_D(v) = \mathbb{Z}_7 \times \mathbb{Z}_2 \), \(N_D(\langle \nu \rangle) \cap C_D(d) / C_D(v) \cap C_D(d) = \mathbb{Z}_6 \) (see [25]) and the structure of \(N_X(\langle \nu \rangle) \), \(N_D(\langle \nu \rangle) \) that \(d \) also normalizes \(N_D(\langle \nu \rangle) \). Hence \(d \in N_X(D) \) by Sylow's theorem.

Lemma 6. We have \(D' = D_4(3) \), \(D / D' \equiv \mathbb{Z}_3 \), and if \(D_0 = \langle D, d' \rangle \), then \(D_0 / D' \equiv \mathbb{Z}_3 \) and \(D_0 \subseteq \text{Aut } D' \). Further \(D_0 - D \) contains precisely one class of involutions conjugate to \(j \) in \(X \) i.e. \(j^X \cap D = d^{D_0} = d^D \).

Proof. The last statement follows from the fact that the representation of \(X \) on the cosets of \(D_0 \) must have permutation character \(\epsilon_2 \). As \(j^X \) is a class of 3-transpositions, \(d^{D_0} \) is a class of 3-transpositions in \(D_0 \). Clearly \(D_0 = \langle d^{D_0} \rangle \), \(Z(D_0) = O_2(D_0) = O_3(D_0) = 1 \), so Fischer's result [1] yields \(D_0' \neq D_0'' \).

If \(T_0 \) is a Sylow 2-subgroup of \(C(z) \cap D_0 \) then \(Z(T_0) = \langle z \rangle \) and \(\langle z^D \cap C_D(z) \rangle = O_{2,3,2} (C_D(z)) \). Thus the Frattini argument yields \(D' = D'' \) and \(|D : D'| < 3 \). Hence \(|D : D'| = 3 \) and \(\langle D', d' \rangle \cong D_4(3) \cdot \mathbb{Z}_3 = O_8^+(3) \) by Fischer [1]. The other assertions in the lemma follow from the structure of \(C_X(z) \cap D_0 \).

Lemma 7. The subgroup \(X \) contains exactly one conjugacy class of subgroups isomorphic to \(D_0 \) (at \(D_4(3) \cdot \Sigma_3 \)).

Proof. Suppose \(D_0^* \subseteq X \), \(D_0^* \cong D_0 \) but \(D_0^* \) is not conjugate to \(D_0 \). We may assume \(d \in D_0 \cap D_0^* \). Now \(C_D(d) = \Omega_7(3) \) and this subgroup contains no conjugates of \(d \). By [30] \((17 \cdot 2 \cdot 4), M(22)\) contains precisely two classes of subgroups isomorphic to \(\Omega_7(3) \). If \([d^x, d] \neq 1 \) for \(x \in X \) then \(C_X(\langle d^x, d \rangle) \cong \Omega_7(3) \) and this subgroup contains conjugates of \(d \). Thus we may assume that \(D_0 \cap D_0^* \supseteq C_D(d) \times \langle d \rangle \).

Let \(\langle \rho \rangle \) be a Sylow 13-subgroup of \(C_D(d) \). Then

\[
\langle \rho \rangle \times \langle d^x \rangle \subseteq C_D(d) \times \langle d \rangle \subseteq D_0 \cap D_0^*,
\]

\[
R_0(\rho) = C_X(\rho) \cong \mathbb{Z}_{13} \times \Sigma_3,
\]

whence \(D_0 \cap D_0^* \supseteq C_D(d) \). It follows immediately that \(D_0 = D_0^* \) and the lemma is proved.
3. **The graph for G.** In this section we will consider various graphs, all of which will be undirected without loops or multiple edges. If Γ is a graph and x a vertex in Γ then Γ_x will denote the subgraph of Γ whose vertices are those connected (by an edge) to x.

The graph $\Gamma(\mathcal{O})$. Let $\mathcal{O} = j^X$, the class of 3-transpositions of X. The graph $\Gamma(\mathcal{O})$ has vertex set \mathcal{O} and $\{d, e\}$ is an edge for $d, e \in \mathcal{O}$ if and only if $1 \neq de = ed$.

The graph $\Gamma(\mathcal{O}, D_0, \Lambda_d)$. Let $\pi : D_0^X \to D_0^X\pi$ be a bijection with $D_0^X \cap D_0^X\pi = \emptyset$. Put $A = D_0^X \cup D_0^X\pi$. Fischer [30] defines the graph $\Gamma = \Gamma(\mathcal{O}, D_0, \Lambda_d)$ in the following way: Γ has vertex set $\{\pi\} \cup \mathcal{O} \cup A$ with edges as given below:

- $\{\pi, \gamma\}$ is an edge if and only if $\gamma \in \mathcal{O}$;
- $\{d, e\}$ is an edge, $d, e \in \mathcal{O}$, if and only if $1 \neq de = ed$;
- $\{d, D_0^X\pi\}$ is an edge, $d \in \mathcal{O}$, $x \in X$, if and only if $d \in D_0^X$;
- $\{d, D_0^X\pi\}$ is an edge, $d \in \mathcal{O}$, $x \in X$, if and only if $\{d, D_0^X\}$ is an edge.

Fix $d \in \mathcal{O} \cap D_0$; let Γ_d be the graph with vertex set Γ_d and edges as defined above plus a set of edges Λ_d with vertices in Δ so that $\Gamma_d \cong \Gamma(\mathcal{O})$.

Λ_d is a set of edges in Γ.

For each $g \in D_0$, define the map \mathcal{g} on μ by

$$
\pi(\mathcal{g}) = \pi; \quad d(\mathcal{g}) = d^g \quad (d \in \mathcal{O});
$$

$$
\delta(\mathcal{g}) = \begin{cases} D_0^g & \text{if } \delta = D_0^g \in \Delta, \\ D_0^{\sigma g} & \text{if } \delta = D_0^{\sigma g} \in \Delta.
\end{cases}
$$

$\{\delta_1, \delta_2\}$ is an edge, $\delta_1, \delta_2 \in \Delta$ if and only if there exists $g \in D_0$ with $\{\delta_1(\mathcal{g}), \delta_2(\mathcal{g})\} \in \Lambda_d$.

The graph $\Gamma = \Gamma(\mathcal{O}, D_0, \Lambda_d)$ is a central extension of $\Gamma(\mathcal{O})$ with respect to D_0, Λ_d. In [30] Fischer proves that the definition of Γ is independent of the choice of $d \in \mathcal{O}$ [30, 19.1.4], $\Gamma_d \cong \Gamma(\mathcal{O})$ [30, 19.1.2], Γ has transitive group of automorphisms isomorphic to $M(24)$ [30, 19.1.5; 19.2.7] and the central extension is unique [30, §20]. Further $D_0\mu \subseteq \text{Aut} \Gamma$ [30, 10.6.3].

The graph $\Gamma(G)$. The vertex set for $\Gamma(G)$ is $\{Xg \mid g \in G\}$ while $\{Xg, Xy\}$ is an edge if and only if $X^g \cap X^y = C = Z_2 \cdot M(22)$. We will use below the fact that $N_G(X) = X$. (Without loss $c \in C_X(z)$ and as $C_H(c) \cap \langle c, z \rangle = U_4(3)$ while $C_H(c) \cap X/\langle c, z \rangle \cong PSp_4(3)$, we have $N_G(C_X(z)) = C_X(z)$. The Frattini argument yields $N_G(X) = X$.)

Our aim, of course, is to prove that $\Gamma(G) \cong \Gamma$. Let $X \cap X^* = C$ (with $Z(C) = \langle j \rangle$) and $X^* \cap X = D$, with $N_X(D) = \langle d, D \rangle = D_0$. We note that for $x \in X, C \cap C_X(j^x) = C, (Z_2 \times Z_2) \cdot U_6(2)$ (if $1 \neq j \cdot j^x = j^x \cdot j$) or $\Omega_7(3)$ and $D_0 \cap D_0^x \cong D_0$.

Let $\alpha : \{\pi\} \cup \mathcal{O} \to \{X\} \cup \{Xsx \mid x \in X\}$ be defined by $\pi \alpha = X; \quad j^x \alpha = Xsx$ for $x \in X$.

Note that $\langle j^x \rangle = Z(C^x) = Z(X^x \cap X)^x = Z(X^{sx} \cap X)$.

By definition $\{\pi, j^x\}$ is an edge and $\{X, Xsx\} = \{\pi \alpha, j^x \alpha\}$ is an edge for all $x \in X$. Suppose $\{Xsx, Xsy\}$ is an edge $(x, y \in X)$ so that $X^{sx} \cap X^{sy} = C$. If

2In this section, results of the form [30, 19.1.4] refer to Lemma 19.1.4 of [30], etc.
$[j^x, j^y] \neq 1$ then $\Omega^* = X^{x^*} \cap X^{y^*} \cap X = \Omega_2(3)$, and by Lemma 1, $C_G(\Omega^*) = \langle j^x, j^y \rangle$. However if $\langle e \rangle = Z(X^{x^*} \cap X^{y^*}) \subseteq C_G(\Omega^*)$, which is a contradiction. Thus $[j^x, j^y] = 1$. Conversely, suppose $[j^x, j^y]$ is an edge so that $[j^x, j^y] = 1$. Then $(X^{x^*} \cap X) \cap (X^{y^*} \cap X) \cong (Z_2 \times Z_2) : U(2)$, whence $X^{x^*} \cap X^{y^*} = C$ as required. Therefore (X^{x^*}, X^{y^*}) is an edge in $\Gamma(G)_X$ if and only if (j^x, j^y) is an edge in Γ. In particular, we have proved that $\Gamma(G)_X \cong \Gamma(0)$ and, as G is transitive on $\Gamma(G)$, $\Gamma(G)_{X^g} \cong \Gamma(0)$ for all $g \in G$.

For convenience take $j = d \in D_0$ and extend the definition of α to Γ_d by taking $\alpha|_{\Gamma_d}$ to be an isomorphism from Γ_d to $\Gamma(G)_{X^x}$. (This is possible because of the way Λ_d is chosen in the definition of Γ.) As in Lemma 3 take $X' \cap X = D$ (for some $r \in G$). If $D_0^r \in \Gamma_d$ for $x \in G$ we claim that $\{D_0^x, D_0^{y^*}\} = \{X^{x^*}, X^{y^*}\}$. Note that $\{D_0, D_0\}$ is uniquely determined by the set $\{X, X^x\}$ of involutions joined to D_0, D_0. Let $e = d^x$ so that $ea = X^{x^*}$. Since α is an isomorphism we must show therefore that $\{e, D_0\}$ is an edge if and only if both $\{X^{x^*}, X^{y^*}\}$ is an edge in $\Gamma(G)_X$. In particular, we have proved that $\Gamma(G)_X \cong \Gamma(0)$ and, as G is transitive on $\Gamma(G)$, $\Gamma(G)_{X^g} \cong \Gamma(0)$ for all $g \in G$.

If (X^{x^*}, X^{y^*}) is an edge, $X^{x^*} \cap X^{y^*} = C$ from which we get $X \cap X^{x^*} \cap X^{y^*} = \Omega_2(3)$. Since $X \cap X^{y^*} = X \cap X^{x^*} \cap X^{y^*}$ the possible intersections of conjugates of D_0 in X yield $X^{x^*} \cap X^{y^*} = C$ also. The same argument yields the converse so we have (X^{x^*}, X^{y^*}) is an edge if and only if (X^{x^*}, X^{y^*}) is an edge. Since $C_X(e) \cap X^{x^*} \subseteq X \cap X^{x^*} \cap X^{y^*}$, the argument of Lemma 5 yields that if $X^{x^*} \cap X^{y^*} \subseteq C$ then $e \in D_0^x \cap D_0^y$ ($D^x = X^{x^*} \cap X$). Suppose now that $e \in D_0^x$. Then $C_X(e) \cap D^x = \Omega_2(3)$ and so $X \cap X^{x^*} \cap X^{y^*}$ contains a subgroup isomorphic to $\Omega_2(3)$. As above this yields that $X^{x^*} \cap X^{y^*} = C$. This completes the proof that $\{D_0^x, D_0^y\} = \{X^{x^*}, X^{y^*}\}$. Without loss we may take $D_0 \alpha = Xr, D_0 \alpha^n = X^{rdx}$.

Let β denote the representation of G on the cosets of X, i.e. $X\gamma(g\beta) = X\gamma g$ for $\gamma, g \in G$. For each $e = d^x \in D_0 \cap \Omega$, $g \in D$, define

$$\alpha_e : \Gamma_e \rightarrow \Gamma(G)_{X^g} \text{ by } \alpha_e = (g^{-1} \mu)\alpha(g\beta).$$

From the definition we have $\pi \alpha = \pi \alpha = X$, and if $d^x \in \Gamma_e$, then $d \alpha = d \alpha = X^{x^*}$. We show that the definition of α_e is independent of g. Since μ, β are homomorphisms it is enough to show that for $g \in D_0(d), (g^{-1} \mu)\alpha(g\beta) = \alpha$ on Γ_d. However this follows by Fischer [30, 10.5] as $(g^{-1} \mu)\alpha(g\beta)\alpha^{-1}$ fixes $\Gamma(d \cap \Gamma) \cup \{D_0, D_0\}$ (we need here that $g \in D$).

We next prove that if $e \in \Gamma_e, f \in \Gamma_f$ (for some $f \in \Omega, D_0$) then $\gamma \alpha_e = \gamma \alpha_f$. Again, as μ, β are homomorphisms, it is enough to show that if $\gamma \in \Gamma_d \cap \Gamma_e, \gamma \alpha = \gamma \alpha$. Suppose $\gamma \in \{D_0^x, D_0^y\}$, so that $\langle d, e \rangle \subseteq D_0^x$. As the definition of α_e is independent of the choice of $g (e = d^x)$ we take $g = ed \in D^x$. Thus $\gamma(g^{-1})\alpha(g\beta) = \gamma$ and $(\gamma \alpha)(g\beta) = \gamma$, whence $\gamma \alpha = \gamma \alpha_e$ as required.

Since $D_0^x \cap D_0^y \neq \emptyset$ for all $x \in X$ [30, 19.1.5], we can define $\alpha : \Gamma \rightarrow \Gamma(G)$ by $\alpha|_{\Gamma_e} = \alpha_e$ for each $e \in D_0 \cap \Omega$. Each α_e is an isomorphism, whence α is an isomorphism and $\Gamma \cong \Gamma(G)$.

Lemma 8. We have $G \cong M(24)'$.

Proof. As we have proved $\Gamma \cong \Gamma(G)$, G is isomorphic to a subgroup of $\text{Aut} \Gamma = M(24)$. The lemma follows as both $G, M(24)'$ are simple groups of order $\frac{1}{2} | M(24)|$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
References

5. ______, On finite groups with Sylow 2-subgroups of type A_n, $n = 8, 9, 10, 11$, J. Algebra 19 (1971), 185–227.
27. R. Solomon, Finite groups with Sylow 2-subgroups of type $β_1$, J. Algebra 24 (1973), 346–378.
29. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ADELAIDE, ADELAIDE, SOUTH AUSTRALIA, AUSTRALIA