Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic invariants of boundary links


Author: Nobuyuki Sato
Journal: Trans. Amer. Math. Soc. 265 (1981), 359-374
MSC: Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9947-1981-0610954-9
MathSciNet review: 610954
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the homology of the universal abelian cover of the complement of a boundary link of $ n$-spheres in $ {S^{n + 2}}$, as modules over the (free abelian) group of covering transformations. A consequence of our results is a characterization of the polynomial invariants $ {p_{i,q}}$ of boundary links for $ 1 \leqslant q \leqslant [n/2]$. Along the way we address the following algebraic problem: given a homomorphism of commutative rings $ f:R \to S$ and a chain complex $ {C_ \ast }$ over $ R$, determine when the complex $ S{ \otimes _R}{C_ \ast }$ is acyclic. The present work is a step toward the characterization of link modules in general.


References [Enhancements On Off] (What's this?)

  • [1] R. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340-356. MR 0085512 (19:53a)
  • [2] D. Buchsbaum and D. Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259-268. MR 0314819 (47:3369)
  • [3] -, Some structure theorems for finite free resolutions, Advances in Math. 12 (1974), 84-139. MR 0340240 (49:4995)
  • [4] H. Cartan and S. Eilenburg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [5] W. Dwyer, Vanishing homology over nilpotent groups, Proc. Amer. Math. Soc. 49 (1975), 8-12. MR 0374242 (51:10442)
  • [6] M. Gutierrez, Boundary links and an unlinking theorem, Trans. Amer. Math. Soc. 171 (1972), 491-499. MR 0310902 (46:10000)
  • [7] -, Polynomial invariants of boundary links, Rev. Columbian Mat. 8 (1974), 97-109. MR 0367969 (51:4211)
  • [8] P. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge Univ. Press, Cambridge, 1960. MR 0115161 (22:5963)
  • [9] I. Kaplansky, Commutative algebra, Allyn and Bacon, Boston, Mass., 1970. MR 0254021 (40:7234)
  • [10] M. Kervaire, Les noeds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 0189052 (32:6479)
  • [11] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141. MR 0180964 (31:5194)
  • [12] -, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 0200922 (34:808)
  • [13] -, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69-84. MR 0224082 (36:7129)
  • [14] -, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50. MR 0461518 (57:1503)
  • [15] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [16] J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147. MR 0141115 (25:4526)
  • [17] D. G. Northcott, Finite free resolutions, Cambridge Univ. Press, Cambridge, Mass., 1976. MR 0460383 (57:377)
  • [18] N. A. Sato, Free coverings and modules of boundary links, Trans. Amer. Math. Soc. (to appear). MR 603777 (82j:57020)
  • [19] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592. MR 1512955
  • [20] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. MR 0153022 (27:2991)
  • [21] N. Smythe, Boundary links, Topology Seminar (Wisconsin, 1965), Princeton Univ. Press, Princeton, N. J., 1966.
  • [22] R. G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120. MR 0469906 (57:9686)
  • [23] J. Smith, Acyclic localizations, J. Pure Appl. Algebra 12 (1978), 117-127. MR 0491895 (58:11075)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0610954-9
Keywords: Link, boundary link, universal abelian cover, module of type $ L$
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society