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TENSEGRITY FRAMEWORKS

BY

B. ROTH1 AND W. WHITELEY

Abstract. A tensegrity framework consists of bars which preserve the distance

between certain pairs of vertices, cables which provide an upper bound for the

distance between some other pairs of vertices and struts which give a lower bound

for the distance between still other pairs of vertices. The present paper establishes

some basic results concerning the rigidity, flexibility, infinitesimal rigidity and

infinitesimal flexibility of tensegrity frameworks. These results are then applied to a

number of questions, problems and conjectures regarding tensegrity frameworks in

the plane and in space.

1. Introduction. The rigidity and flexibility of frameworks have been extensively

studied in recent years and, although many questions remain unanswered, there

now exists a substantial body of useful and interesting results. However, our

knowledge of tensegrity frameworks (consisting of bars which preserve the distance

between certain pairs of vertices, cables which provide an upper bound for the

distance between some pair of vertices and struts which give a lower bound for the

distance between other pairs of vertices) is in an embryonic state. Tensegrity

frameworks are obviously of interest to architects and engineers (for example, see

Calladine [4] and Fuller [6]); perhaps more surprising is their appearance in the

work of the sculptor Kenneth Snelson. The symbiosis of frameworks and tensegrity

frameworks has only lately become evident. For example, recent work of Connelly

[5] on the rigidity of frameworks given by triangulated surfaces relies heavily on

tensegrity frameworks. On the other hand, one theme of the present paper is that

knowledge of frameworks frequently enhances our understanding of tensegrity

frameworks. This mutually advantageous interplay between the study of frame-

works and that of tensegrity frameworks seems likely to remain a prominent

feature of the subject.

The present paper establishes some basic results concerning tensegrity frame-

works and then applies these to several open problems and conjectures in the plane

and in space. More specifically, in §3 we define rigidity and flexibility for tensegrity

frameworks and show that these notions are invariant under various changes in the

definitions. In §4, after defining infinitesimal rigidity and infinitesimal flexibility

for tensegrity frameworks, we establish the equivalence of infinitesimal rigidity and

static rigidity for tensegrity frameworks using standard results from finite-dimen-

sional  convexity theory.  §5  deals with  the relationships  between infinitesimal
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rigidity and rigidity for a tensegrity framework G(p) and the framework G(p)

obtained from G(p) by replacing all its members (bars, cables, and struts) by bars.

Among other things, we show that G(p) is infinitesimally rigid if and only if G(p)

is infinitesimally rigid and there exists a stress of G(p) which assigns a negative

coefficient to every cable of G(p) and a positive coefficient to every strut of G(p).

We also examine various generic properties of tensegrity frameworks in §5. In

particular, we identify a dense open set of realizations for which rigidity and

infinitesimal rigidity are equivalent. §6 focuses on tensegrity frameworks in the

plane, examining in detail some open problems and conjectures regarding tense-

grity polygons posed by Grünbaum and Shephard [9]. Finally, in §7 we examine

tensegrity frameworks in R3.

2. Notation and terminology. An abstract tensegrity framework G = (V; B, C, S)

is a set V «« {1, . .., t>) whose elements are called vertices together with pairwise

disjoint sets B, C, and S of the two-element subsets of V, referred to as bars, cables

and struts, respectively. A member of an abstract tensegrity framework is an

element of the set E = B u C U S. When C = S = 0 we often refer to G = ( V;

B, C, S) as an abstract framework and write G = ( V, B). A tensegrity framework

G(p) in R" is an abstract tensegrity framework G = (V; B, C, S) together with a

point

p = (Pl, . . . ,pv) G R" X • • ■  XR" = Rm.

G(p) is the realization of G in R" obtained by locating vertex i at point/?, in R". We

frequently refer to G(p) as a framework in R" if C = 5 = 0.

For an abstract tensegrity framework G = (V; B, C, S) we let G denote the

abstract framework G = (V, B) where V = V and B = B u C u S. Thus G(p) is

the framework in R" obtained by replacing all the members of the tensegrity

framework G(p) in R" by bars.

Throughout the paper \A\ denotes the cardinality of the set A.

3. Rigidity and flexibility. A rigid motion L of R" is a map L: R" —> R" satisfying

||Lx - Ly\\ = \\x — y\\ for all x, y G R". We say that p = (pv . . . ,pv) and a =

(a,, . . . , qv) in Rnv are congruent if there exists a rigid motion L: R" —> R" such that

Lp¡ = qi for I < i < v. Let M(p) denote the smooth manifold in Rnv of points

congruent to p. An algebraic set is the set of common zeros of a collection of

polynomials. Then M(p) is the algebraic set

{a = (a„ ...,qv)e R~: \\Pi - Pjf = \\q, - aj2, 1 < i,j < v).

Let G(p) be a tensegrity framework in R". Each bar of G(p) preserves the

distance between a pair of vertices while each cable (respectively, strut) places an

upper bound (respectively, lower bound) on the distance between a pair of vertices.

Thus we are led to

X(p) ={x = (xx, ...,*„) S Rnv   ||*( - x,.|| = \\pt - pj\\ for all

{/,/} G B, \\x, - xj\\ < \\pt-pj\\ for all {/,/} G C

and \\x, - xj\\ > \\Pt-pjW for all {/,/) G 5},
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the set of points in R"v satisfying the constraints imposed by the members of the

tensegrity framework G(p). Implicit in our definition of X(p) is the requirement

that the cable (or strut) joining vertices p¡ and pj has length \\p¡ — p.||. Since rigid

motions are distance preserving, we have M(p) c X(p).

Definition 3.1. Let G(p) be a tensegrity framework in R". G(p) is rigid in R" if

there exists a neighborhood U of p in RTO such that X(p) n(/= M(p) n U. G(p)

is flexible in R" if there exists a continuous path x: [0, 1] —* Rnv with x(0) = p and

x(t) G X(p) - M(p) for all t G (0, 1]. Such a path is called a flexing of G(p).

Some authors refer to flexible frameworks as "mechanisms" and use the word

"stiff" as a synonym for rigid. Some examples of rigid and flexible tensegrity

frameworks are given in the next section following Definition 4.1. The following

proposition establishes the equivalence of nonrigidity and flexibility and also gives

two other equivalent forms of the definition of flexibility for tensegrity frameworks.

Proposition 3.2. Suppose G(p) is a tensegrity framework in R". Then the following

are equivalent:

(a) G(p) is not rigid in R";

(b) there exists a real analytic path x: [0, 1] -> R"" with x(0) = p and x(t) G X(p)

- M(p)for all t G (0, 1];

(c) G(p) is flexible in R";

(d) there exists a continuous path x: [0, 1]—> X(p) with x(0) = p and x(tx) £

M(p) for some tt G (0, 1].

Proof. The fact that (a) implies (b) follows from path selection results in

algebraic geometry, although a bit of preliminary work is required since X(p) is not

an algebraic set. Let A be the algebraic set in R^ + lci + l5! consisting of those points

(xx, ...,xv,... ,y{iJ), ..., z{Kmy . . . ) G ir+KMsi   such   that   \\xg - xh\\2 =

\\Pg - Ph\\2 for all [g, h) G B, \\X¡ - xj\\2 + y2{iJ) = \\p, - Pj\\2 for all {i,j} G C

and ||jc* - xm\\2 - z\km) = \\pk - pj\2 for all {k, m) G S. Clearly if (xx, . . . , xv)

G X(p)   then   (xx, . . . , xv, . . . ,y{iJ], . • • , z{km), . . . ) G A   where  y2{iJ]   =

\\Pi - Pjf - \\x> - Xjf for {i,j} G C and z\k_m) = \\xk - xm\\2 - \\pk - pm\\2 for

{k, m) G S. Conversely, if (xx, . . . , xv, . . . ,y{iJ), ■■■, z{k,m], ■ ■ ■ ) G A then

yfij-j and z2k m, are as before and (x,, ..., xv) G X(p). Now suppose G(p) is not

rigid in R". Then every neighborhood of p in R™ contains points of X(p) — M(p)

and thus every neighborhood of (p, 0) = (px, . . . ,pv, . . ., 0, . . . , 0, . . . ) in

ßnc + ld + isi contains points of A — M(p, 0) where M(p, 0) is the algebraic set

M(p) X rIcI + IsI. Therefore, by the curve selection lemma of Milnor [10, Lemma

3.1, p. 25], there exists a real analytic path

\XX, . . . , Xv, . . . ,y{ij), ■ ■ ■ , z{k, m)' • • • )• L"   ' J ^K

beginning at (p, 0) and belonging to A - M(p, 0) for / G (0, 1]. Then x(t) =

(xx(t), . . . , xc(t)) is a real analytic path with x(0) = p and x(t) G X(p) — M(p)

for/ G (0, 1].

Clearly (b) implies (c) and (c) implies (d). Finally, if (d) holds then there exists

t0 G [0, /,) such that x(t0) is the last point in M(p) as t increases. Since x(t0) =

(xx(t0), . . . , xv(t0)) G M(p) there exists a rigid motion L: R" —> R" with Lx¡(t^ =

p¡, 1 < /' < o. Therefore Lx = (Lxx, . . . , Lxv) maps ('0, /,] into X(p) — M(p) and
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Lx(t0) = p. Thus every neighborhood of p intersects X(p) — M(p) so G(p) is not

rigid in R".    □

4. Infinitesimal rigidity and statics. The concept of infinitesimal flexibility for

tensegrity frameworks arises from the notion of flexibility by focusing on the

tangential conditions imposed by the inequalities defining X(p). Suppose G = (V;

B, C, S) is an abstract tensegrity framework with t; vertices and p G Rnv. Let

x = (xt, . . . , xv)be a smooth function on [0, 1] with x(0) = p and x(t) G X(p) for

t G [0, 1]. Examining the derivative of \\x¡(t) - Xj(t)\\2 at t = 0, we find that

(x,(0) - x/o)) ■ (x;(0) - *;(0)) = (P, - Pj) ■ (*;(o) - *;(<)))

equals zero for {i,j} G B and is less than or equal to zero (respectively, greater

than or equal to zero) for {i,j} G C (respectively, S). Thus a smooth flexing of

G(p) assigns a velocity vector p, = x¡(0) G R" to each vertex p, of G(p) in such a

way that

(P¡ - Pj)' (m, - Pj)

= 0     for {i,j) G B,

<0     for {/J} G C, (4.1)

> 0     for (i,j) G S.

According to Definition 3.1, a flexing x(t) of a tensegrity framework G(p) begins

at p, belongs to X(p) for all t but does not belong to M(p) for all / > 0. In the

same spirit, we require that an infinitesimal flexing p instantaneously satisfy the

constraints imposed by the members, i.e., satisfy (4.1), but not belong to the

tangent space T(p) of the manifold M(p) at the point p. Let

I(p) = {¡x G Rnv: p satisfies (4.1)},

the space of infinitesimal motions of G(p). Note that the tangent space T(p) c I(p)

since if p G T(p) then (p¡ - pf) • ( ¡u, - ju,) = 0 for all 1 < i,j < v.

Definition 4.1. Suppose G(p) is a tensegrity framework in R". G(p) is infinitesi-

mally rigid in R" if T(p) = I(p) and infinitesimally flexible in R" otherwise.

Elements of l(p) — T(p) are called infinitesimal flexings of G(p).

One immediate consequence of Definition 4.1 is that interchanging the cables

and struts of a tensegrity framework preserves its infinitesimal classification. More

formally, if G = (V; B, C, S) and G' = (V; B, C, S') where C = S and S' = C

then G(p) is infinitesimally rigid in R" if and only if G'(p) is infinitesimally rigid in

R".

We next present a few simple examples of tensegrity frameworks. Throughout

the paper bars will be denoted by solid lines, cables by dashes and struts by double

lines. The tensegrity framework G(p) in R2 shown in Figure 4.1 is both rigid and

infinitesimally rigid in R2 as is the tensegrity framework G'(p) obtained by

interchanging the cables and struts of G(p). Now consider G(p) and G'(p) as

tensegrity frameworks in R3 (with the four vertices coplanar). Then G(p) is rigid

but infinitesimally flexible in R3. (The assignment to any one vertex of a nonzero

vector perpendicular to the plane of the four vertices and zero vectors to the

remaining vertices gives an infinitesimal flexing of G(p).) However, G'(p) is both
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flexible and infinitesimally flexible in R3. Thus the "interchangeability" of cables

and struts fails for rigid tensegrity frameworks. §§6 and 7 contain many more

examples.

G(p) G'(P)

Figure 4.1

One basic result in the study of frameworks is the equivalence of infinitesimal

rigidity and "static rigidity" (which is defined to mean all equilibrium forces are

resolvable) The analogous result for tensegrity frameworks seems to play an even

more important role in the theory and its proof is more interesting too. Before

establishing that equivalence, we define the basic concepts of statics for tensegrity

frameworks. .

We begin by creating in each member of a tensegrity framework G(p) in R a

force of tension or compression directed along the member with the stipulation that

only tension is allowed in a cable and only compression in a strut. More precisely,

suppose there is associated with each {i,j} & B u C U S a scalar U{kJ) such that

a, (p - p ) is the force exerted by the member on vertex p¡ (and w{iJ)(Pj P¡) is

thVforce exerted on pj). If co{,,3 < 0 the force is called a tension in the member

while if co,   , > 0 it is referred to as a compression in the member. A stress of a

. . . ) of scalars,

*{¡J)

°('.y}'tensegrity framework G(p) in R" is a collection co = (

one for each {/J) G E «5 U C U S, such that w{U) < 0 (respectively,  > 0) for

all {i,j} <E C (respectively, S) and

<*íu)(Pí - P¿ = °' !</<». (4.2)2
{J: lU}eE)

Condition (4.2) says the forces at each vertex are in equilibrium, i.e., their sum is

zero. It proves convenient to replace the v equations in R" in (4.2) by a single

equation in R"v. To accomplish this, let

/,{,,,) = 0cI,...,*jGR''x.--xR« = R-

where   ** - 0   for   k * «, j,   X, = P,  - Pj   and   xJ  = Pj - P,-   Then   co -

( . . . ,co{,7}, . . . ) is a stress of G(p) if and only if co,,,,-, < 0 for cables, u{U) > 0

for struts and

{..J)SE

We next allow external forces to act on the vertices of the tensegrity framework

G(p) in R". Since our interest is in statics, we restrict our attention to systems of

external forces which are in "equilibrium". A vector F = (Fx, . . . , F0) G RTO is an

U(U}F(U) - °-
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equilibrium force forp = (px, . . . , pv) G Rnv if F G T(p)~L, the orthogonal comple-

ment of the tangent space T(p) atp to the manifold of points congruent top. (The

reader who is accustomed to thinking of equilibrium forces in dimensions two and

three in terms of moments may think this a strange definition. To become

comfortable with it one should verify that for p = (p,, . . . , pv) G R3v, F =

(Fx, . . . , Fv) G T(p)x if and only if the application of the forces F¡ to the vertices

p, produces zero torque about every axis, which is equivalent to 2j.| F) = 0 and

2^=iP, x F¡. = 0 where "x" denotes the cross product in R3. Similarly, for

p = (Px, . . . ,Pv) G R2v, F = (F„ ...,FV)G T(Py if and only if 2?_, F,. = 0 and

2î- xPr F* = 0 where (a, b)* = (b, - a) for (a, b) G R2.)

A vector F = (F,, . . . , Fv) G Rnv is a resolvable force for the tensegrity frame-

work G(p) in R" if there exist scalars co(l n, {i,j) & E = B u C u S, such that

W//« < 0 (respectively, > 0) for all {/,./'} G C (respectively, S1) and

2 "</,,}(/>, - />,■) = F¡,        1 < i < v,
U- (tJieE)

or, equivalently,

(UjSE

Note that a stress of a tensegrity framework G(p) is simply a resolution of the

trivial force F = (0, . . . , 0) G RTC.

The space T(p)L of equilibrium forces forp is a vector space. On the other hand,

the set <3l of resolvable forces for G(p) is a convex cone, which means it is a

convex set which is closed under multiplication by nonnegative scalars. It is not

hard to show that every resolvable force for G(p) is an equilibrium force for p.

Each F,: n G T(p)x since for p G T(p) we have

F{,J) ■ P  =  (P,■   - Pj) ■ (ft, -   Py)   =  0

by the comment preceding Definition 4.1. Since every resolvable force F for G(p)

is a linear combination of the vectors F,,y), {i,j} G B u C u S, we have SI c

T(p)x. Static rigidity is defined by the opposite inclusion.

Definition 4.2. A tensegrity framework G(p) is statically rigid in R" if every

equilibrium force forp is a resolvable force for G(p), i.e., if T(p)x c 91.

We are now in a position to establish the equivalence of infinitesimal rigidity and

static rigidity for tensegrity frameworks. The proof relies on standard results from

finite-dimensional convexity theory. For a subset X c R", let

X + = { p G R": p • x > 0 for all x G X }.

If A- is a closed convex cone in R" and x0 G R" — X, then standard separation

results (for example, see [8, Theorem 1, p. 11] or [11, Theorem 11.3, p. 97]) imply

that there exists p G R" with p G X + but p • x0 < 0. Armed with this, it is quite

easy to show that

(i) for Y <zR" and X a closed convex cone in R", Y c X if and only if

X+ c Y+,

(ii) for Y <zR", Y + + is the smallest closed convex cone in R" containing Y.
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Finally, it is obvious geometrically but not entirely trivial to prove (see [11,

Theorem 19.1, p. 171]) that

(iii) iï Y = {yx, . . . ,yk) is a finite subset of R" then the convex cone (2*_, \y¡'-

\ > 0 for 1 < i < k) generated by Y is closed in R" (and therefore equals Y + +).

Theorem 4.3. Suppose G(p) is a tensegrity framework in R" where G = (V; B, C,

S). Then G(p) is infinitesimally rigid in R" if and only if G(p) is statically rigid in R".

Proof. Let Y = {-F{iJ): {i,j} G B u C) u {F{,.,}: {i,j} G B u S). Then

the space I(p) of infinitesimal motions of G(p) is Y+ and the set 61 of resolvable

forces for G(p) is the convex cone generated by Y. By (i) we have Y+ = I(p) c

T(p) if and only if T(p)+ c I(p)+ = Y + +. But T(p)+ = F(p)x since T(p) is a

subspace and Y + + = ÍR by (iii). Therefore every infinitesimal motion belongs to

T(p) if and only if every equilibrium force is resolvable.    □

A similar argument shows that the equilibrium force F¡¡n fails to be a resolvable

force for G(p) if and only if there exists an infinitesimal motion p of G(p) which

instantaneously decreases the distance between p, and pp i.e., satisfies F,(n ■ p =

(Pt -/>,)• (ft" P,)<0.

5. Generic properties of tensegrity frameworks. This section deals with the general

behavior of tensegrity frameworks, examining questions such as the following.

Does each abstract tensegrity framework have a "generic" classification? Is there a

"rigidity predictor" for tensegrity frameworks? Is there a dense open set of

realizations for which rigidity and infinitesimal rigidity agree? What is the topologi-

cal nature of the set of infinitesimally rigid realizations? How do projective maps

affect tensegrity frameworks?

First, we formulate some definitions. Let G = (V; B, C, S) be an abstract

tensegrity framework with v vertices. For each nonempty subset A of E = B u C

U S, we order the members in A in some way and define the edge function fA :

R™ _> rW of the set A by

Ja(P\> ■ ■ ■ >Pv) = ( • ■ • ÂPt - Pj\\2, ■ ■ ■)

where (i,j) S A. A point p G Rnv is a regular point of G = ( V; B, C, S) if

rank dfE(p) = max{rank dfE(q): a G Rnv)

andp is said to be in general position for G = (V; B, C, S) if

rank dfA(p) = max{rank dfA(q): ?£R"°}

for every nonempty A c E. Note that the rows of the matrix dfE(p) are the vectors

2F,ij) for {i,j} G E. Thus a stress of the framework G(p) is just a linear

dependency among the rows of dfE(p).

Next, we review some properties of frameworks which might be referred to as

"generic" ones. The regular points of a framework G form a dense open subset of

R"" [1, p. 283]. For regular points we either always have rigidity or always have

flexibility [1, Corollary 2]. Since rigidity and infinitesimal rigidity are equivalent at

regular points ([1, Theorem] and [2, §3]), we have a dense open set of realizations

for which the classification is constant and the two notions of rigidity agree. An
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abstract framework G is generically rigid in R" if G(p) is rigid (or, equivalently,

infinitesimally rigid) in R" for all regular points p of G. Otherwise G is said to be

generically flexible in R". The generic classification is given by a "rigidity predictor"

which involves the rank of the derivative of the edge function [1, Theorem]. Since

G(p) infinitesimally rigid implies p is a regular point of G [2, Theorem, §3], the set

of infinitesimally rigid realizations of G is open (it is either empty or coincides with

the set of regular points). Finally, the infinitesimal properties of frameworks are

projectively invariant.

(a) (b)

Figure 5.1

A first indication of the more complicated nature of the situation for tensegrity

frameworks is provided by the fact that an abstract tensegrity framework may not

have a generic classification. For example, the tensegrity frameworks in R2 shown

in Figure 5.1 are realizations of the same abstract tensegrity framework G = (V; B,

C, 0) where the four bars in B are indicated by solid lines and the two cables in C

by dashes. The realizations close to that shown in (a) are all rigid in R2 while those

close to that shown in (b) are all flexible in R2. Thus there exist nonempty open sets

of both rigid and flexible realizations. For all realizations p near those shown in (a)

and (b), every nontrivial stress of G(p) assigns coefficients of one sign to the

interior members (there are two interior members, both cables, in (a) and three

interior members, two bars and a cable, in (b)) and coefficients of the opposite sign

to the remaining members of G(p). We will soon see that the distribution of signs

in these stresses explains the rigidity of realizations near (a) and the flexibility of

those near (b).

The following technical lemma is the key to several parts of the first theorem of

this section.

Lemma 5.1. Suppose Y = {yx, . . . ,yk) C R". Then Y+ = yx if and only if there

exist positive scalars \x, . . . ,Xk with 2*=) A¿y; = 0.

Proof. If Y+ = Yx then Y + + = {2*=1 \y¡- \ > 0 for 1 < i < A:} is a sub-

space. Therefore for each y we have — y¡ = 2*_i \y¡, A, > 0 for 1 < / < k, which

gives Xxyx + ■ ■ ■ +(1+ e\)y¡ + • • • +AfcyJt = 0. The sum of k such expressions

gives a linear dependency of_y,, . . . ,yk with all positive coefficients.

Conversely, if 2*_, A, y¡ = 0 with À, > 0 and p G Y + then

k k

o = p- S \>i-2 \(m-y,).
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Since \(n-y¡) > 0 and A, > 0 for all /, we have ¡x-y¡ = 0 for all i. Therefore
p    yl i—i

Closely related to the positive dependency in Lemma 5.1 is a special kind of

stress for tensegrity frameworks. A proper stress co = ( . . . ,co{„y), . . . ) of a tense-

grity framework G(p) is a stress of G(p) satisfying co{, y} < 0 for all {i,j} G C and

a,,n > 0 for all [i,j] G S. Note that the zero stress co = ( . . . ,0, . . . ) is a proper

stress of G(p) if C = S = 0. Lemma 5.1 implies that there exists a proper stress of

G(p) if and only if the space I(p) of infinitesimal motions of G(p) equals the space

of infinitesimal motions of G(p). The following theorem establishes some connec-

tions between infinitesimal rigidity and rigidity for a tensegrity framework G(p)

and the corresponding framework G(p). It can be viewed as extending the rigidity

predictor from frameworks to tensegrity frameworks.

Theorem 5.2. Suppose G(p) is a tensegrity framework in R". Then the following

are equivalent:

(a) G(p) is infinitesimally rigid in R";

(b) G(p) is infinitesimally rigid in R" and there exists a proper stress of G(p);

(c) G(p) is infinitesimally rigid in R" and there exists a proper stress of G(p);

(d) G(p) is rigid in R", p is a regular point of G and there exists a proper stress of

G(p);_

(e) G(p) is rigid in R", p is a regular point of G and there exists a proper stress of

G(p).

Proof. Let Y = {-F{iJ): {i,j} G B u C) u {F,,,,,: {i,j} G B u S). Then

Kp) = Y+ and T(p) <z YL hy the comment preceding Definition 4.1. If I(p) =

T(p) then Y+ c Y x and thus Y+ = Y^. By Lemma 5.1 there exists a positive

dependency among the elements of Y which gives a proper stress of G(p). Thus (a)

implies (b) and (b) clearly implies (c). We now show that (c) implies (a). Since G(p)

has a proper stress there exists a linear dependency among the elements of Y with

positive coefficients for all elements of Y arising from cables and struts. Each bar

{/,_/'} gives two elements ± F,,j, of Y so it is easy to find a linear dependency

among the elements of Y with all positive coefficients. Thus I(p) = Y + = Y x by

Lemma 5.1. Also the space Y ± of infinitesimal motions of G(p) equals T(p) since

G(p) is infinitesimally rigid in R". Therefore I(p) = T(p), i.e., G(p) is infinitesi-

mally rigid in R". This establishes the equivalence of (a)-(c).

Since a framework G(p) is infinitesimally rigid in R" if and only if G(p) is rigid

in R" andp is a regular point of G (see [2, Theorem, §3]), (c) and (e) are equivalent.

Finally, it is obvious that (d) implies (e) and all that remains is to show that if G(p)

is infinitesimally rigid in R" then G(p) is rigid in R". We delay the proof of this fact

a bit; it is Theorem 5.7.    □

Theorem 5.2 explains the absence of a generic classification for tensegrity

frameworks. Note that the tensegrity framework in Figure 5.1(a) has a proper stress

while that in Figure 5.1(b) does not. Therefore the existence of a proper stress for a

single realization (or even a nonempty open set of realizations) does not imply the

existence of a dense open set of realizations with a proper stress. Thus  the
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infinitesimal rigidity of a single realization does not imply infinitesimal rigidity for

a dense open set of realizations. On the other hand, one can think of Theorem 5.2

as a kind of rigidity predictor for tensegrity frameworks since it replaces the

question of the infinitesimal rigidity of a tensegrity framework G(p) by that of the

infinitesimal rigidity of the framework G(p) and the existence of a stress of G(p)

with opposite signs on the cables and struts of G(p).

Our next corollary says that if G(p) is an infinitesimally rigid tensegrity frame-

work then G(p) is an infinitesimally rigid framework which is over-braced.

Corollary 5.3. If G(p) is an infinitesimally rigid tensegrity framework in R" then

the framework G'(p) obtained by deleting any cable or strut of G and replacing the

remaining members of G by bars is infinitesimally rigid in R".

Proof. Suppose G = (V; B, C, S) and let G' = (V, E) where E = B u C u 5

— {{k, m}} for some {k, m] G C u S. If G(p) is infinitesimally rigid in R" then

I(p) = T(p) and there exists a proper stress of G(p). If p G I'(p), i.e., p • F,,n = 0

for all {i,j} G E, then p • F,k m, = 0 also since G(p) has a proper stress. Therefore

p G I(p) = T(p) so G'(p) is infinitesimally rigid in R".    □

So far in this paper we have thought of the tensegrity framework G(p) as

primary and occasionally considered the associated framework G(p). Dually, we

could begin with a framework and ask if it has bars which can be replaced by

cables or struts. Theorem 5.2 says that if G(p) is an infinitesimally rigid framework

with a nontrivial stress then there exist bars of G(p) whose replacement by suitably

chosen cables and struts leads to an infinitesimally rigid tensegrity framework. In

fact, every infinitesimally rigid tensegrity framework arises in this way according to

Theorem 5.2.

We next examine the topological nature of the set of infinitesimally rigid

realizations of an abstract tensegrity framework. The techniques used are closely

related to those involved in Cramer's rule for solving systems of linear equations.

Theorem 5.4. Let G = (V; B, C, S) be an abstract tensegrity framework with v

vertices. Then the set {p G Rnv: G(p) is infinitesimally rigid in R"} of infinitesimally

rigid realizations of G is open in R™.

Proof. Suppose G(p) is infinitesimally rigid in R". Then p is a regular point of

G, say rank dfE(p) = k where E = B u C u S. Then some k X k submatrix of

the |F| X nv matrix dfE(p) is nonsingular, say for simplicity the submatrix formed

by the first k rows and columns. Then co G R|£| is a stress of G(p) if and only if

A(p)co = 0 where A(p) is the k X \E\ matrix which is the transpose of the matrix

consisting of the first k columns of dfE(p). Let a(p) be the nonsingular k X k

matrix consisting of the first k columns of A(p). Multiplying by a(p)~x we find

that the set of solutions co of the linear system A (p)u = 0 is

| co = (co,, . . . , W|£|) G R|£|: co, arbitrary for k < i < |F|

1*1
and co,. = -    2     ay(p)">j for 1 < ; < k

j = k+\
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where atJ(p) is the determinant of the matrix obtained by replacing the /th column

of a(p) by they'th column of A(p) divided by the determinant of a(p).

Since G(p) is infinitesimally rigid in R" there exists a proper stress of G(p) by

Theorem 5.2. This means that some choice of uk + x, . . . , uXE, gives a solution

co = (co,, . . . , co,£|) of A(p)u> = 0 with co, < 0 (respectively, > 0) for ;"s correspond-

ing to cables (respectively, struts) of G(p). The same choice of cok + x, . . . , aXE\ gives

a solution co = (co,, . . . , c0|£|) of A(q)u> = 0 with co, negative for cables and positive

for struts provided a is sufficiently close top since

\E\

co, = -    2     a0(q)wj, 1 < i < k,
j = k+\

depends continuously on q for q near p. This gives a proper stress of G(q) for q

near p. All that remains is to recall that the set of infinitesimally rigid realizations

of the framework G is just the open set of regular points of G ([1, Corollary 2] and

[2, Theorem, §3]). By Theorem 5.2 we conclude that G(q) is infinitesimally rigid in

R" for all q sufficiently close to p.    □

Figure 5.2

The infinitesimally flexible realizations of a tensegrity framework may fail to be

open. For example, the tensegrity framework G(p) in R2 with three collinear

vertices shown in Figure 5.2 is infinitesimally flexible in R2. But there exist

realizations q of G arbitrarily close to p for which G(q) is infinitesimally rigid in R2

(as shown in Figure 5.1(a)). However, it is true that the infinitesimally flexible

realizations which are in general position form an open set. The proof relies on the

following lemma concerning stresses with a minimal number of nonzero coordi-

nates. The support of a stress co = ( . . . ,w,, n, . . . ) of a tensegrity framework,

denoted supp co, is the set {{i,j}: co(, y) =£ 0} of members with nonzero coefficients.

Lemma 5.5. Let G = (V; B, C, S) be an abstract tensegrity framework and

{k, m) G C U S. If there exists a stress of G(p) with {k, m) in its support then

there exists a stress co of G(p) with {k, m) G supp co and rank dfA(p) = \A\ for every

proper subset A of supp co.

Proof. Choose a stress co = ( . . . , co(, y), . . . ) of G(p) with [k, m) G supp co for

which the cardinality of supp co is minimal. We show that co has the desired

property. Suppose there exists a proper subset A of supp co such that dfA(p) has

linearly dependent rows. Consider a nontrivial linear dependency among the rows

of dfA(p). We regard it as a linear dependency X = ( . . . , A,, 7), . . . ) of the rows of

dfE(p) where E=B\jCuSby introducing zero coefficients for members of

E - A.
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For convenience, suppose {k, m) G C. If X,k m) ¥= 0 then either X or — X has the

coefficient of {k, m) negative but is not a stress of G(p) by our choice of co. If

A(*.m) = 0 then for either À or —A there exists a member [g, h) with coefficient

opposite in sign to that of co(g h). Thus there exists a nontrivial linear dependency v

(either A or —A) among the rows of dfE(p) with supp v c supp co, v,km, < 0 and

"<*.*)"<**} <0 for some {*'*)•

Consider the convex combination

tv + (1 - t)u = ( . . . , tv{itj) + (1 - 0w(,,,>, • • • )

for / G [0, 1]. Since tv{gh} + (1 - í)w(a,aj nas opposite signs at / = 0 and t = 1,

there exists /, G (0, 1) with txf{g h) + (1 - 'i)co(g A} = 0. Let t0 be the smallest

value of / such that some coordinate in supp co of tv + (1 - t)co equals zero. Then

t0v,k m, + (1 — t0)iA),k m, < 0 and the signs of the other coefficients of t0v +

(1 - i0)co are all appropriate (i.e., < 0 for cables and > 0 for struts) by our choice

of t0. Therefore t0v + (1 - t0)u is a stress of G(p) with {k, m) in its support. But

its support has fewer elements than supp co, contradicting our choice of co.    fj

Theorem 5.6. Let G — (V; B, C, S) be an abstract tensegrity framework with v

vertices. Then the intersection of the set of infinitesimally flexible realizations of G

and the set of points in general position for G is open in Rnv.

Proof. Suppose that p is in general position for G and {p,} is a sequence of

realizations with pt^>p where each G(p¡) is infinitesimally rigid in R". We show

that G(p) is also infinitesimally rigid in R" by using Theorem 5.2. First, note that

G(p) is infinitesimally rigid in R" since the infinitesimal flexibility of G(p) would

imply that G(q) is infinitesimally flexible for all regular points q ([1, Corollary 2]

and [2, §3]). Thus (7(a) (and hence also G(q)) is infinitesimally flexible for all q

sufficiently close to the regular point p, a contradiction.

Next we establish the existence of a proper stress of G(p) by showing that for

each {k, m) E. C u S there exists a stress of G(p) with {k, m) in its support. Since

each G(p¡) is infinitesimally rigid there exists a stress of G(p¡) with {k, m) in its

support. Therefore, by Lemma 5.5, for each / there exists a stress co, of G(p,) with

{k, m} G supp co, and rank dfA(p¡) = \A\ for every proper subset A of supp co,. We

now choose a subsequence of {p,} (which we again denote by {p,}) for which the

stresses given by Lemma 5.5 all have the same support set D.

Let d = \D\ and A = D — {{k, m)}. Since p is in general position for G, p, is

also for all sufficiently large /. Therefore rank dfA(p) = \A\ = d — 1 but the d rows

of dfD(p) are linearly dependent since every p, has these properties. Since the rows

of the (d — 1) X nv matrix dfA(p) are linearly independent, some (d — 1) X (d —

1) submatrix of dfA(p) is nonsingular. The corresponding columns of dfD(p) can be

used to solve for the linear dependencies among the d rows of dfD(p) (as in the

proof of Theorem 5.4). We find the linear dependencies co = ( . . . ,co{, n, . . . )

among the rows of dfD(p) are given by co(ik m) arbitrary and

U{¡.j) = -a{i.j)(p)^{k.m)    for (ij) G A

where each a,,jAp) is a quotient of determinants of (d — 1) X (d — 1) matrices.

Now suppose {k, m) G C. Letting u,k m, = -1 and <•>,,« = a{,j)(p) for {i,j} G A
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gives a linear dependency among the rows of dfD(p). We need to verify that it is

actually a stress of G(p), i.e., the signs of the co(, y) are appropriate. In a neighbor-

hood of p the (d — 1) X (d — 1) submatrix of dfA is nonsingular while the rows of

dfD remain linearly dependent. Thus for q near p the dependencies among the rows

of dfD(q) are also given by u{k m) arbitrary and co{/J) = -a[iJ}(q)w{k m) for {i,j} G

A. Clearly each G(p¡) has a stress with support D and co{/t m, = -1. Therefore for /

sufficiently large we have a,, j\(p¡) nonpositive for cable and nonnegative for struts.

Letting / ^ oo we find that a,,j\(p) is nonpositive for cables and nonnegative for

struts.    □

One consequence of Theorems 5.4 and 5.6 is that the classification of an abstract

tensegrity framework as infinitesimally rigid or infinitesimally flexible is constant

on the components of the set of points in general position.

Using Theorem 5.4 and the existence of real analytic flexings it is quite easy to

prove that infinitesimal rigidity implies rigidity for tensegrity frameworks. This was

first observed by Connelly [5, Remark 4.1].

Theorem 5.7. // a tensegrity framework G(p) is flexible in R" then G(p) is

infinitesimally flexible in R".

Proof. If G(p) is flexible in R" then there exists a real analytic path x:

[0, 1] -* R"' with x(0) = p and x(t) G X(p) - M(p) for all t G (0, 1] by Proposi-

tion 3.2. Since x(t) G M(p) for all f > 0 there exists a pair of vertices, say k and m,

such that \\xk(t) - xm(/)|| is not a constant function. Thus \\xk(t) - xm(/)||2 is a

nonconstant real analytic function on [0, 1] so its derivative is nonzero for all

sufficiently small t > 0. Similarly, real analyticity implies that for every {i,j} G C

(respectively, S) we either have \\x¡(t) — Xj(t)\\2 constant on [0, 1] or its derivative is

negative (respectively, positive) for all small / > 0. Therefore for all sufficiently

small positive / we have

(*,(/) - Xj(t)) ■ (x;(t) - x'j(t))

= 0 for {i,j) G B,

< 0 for {i,j) G C,

>0     for {/,./} G S,

but

(xk(t)-xm(t))-(x'k(t)-xm(t))*0.

Therefore x'(t) G ¡(x(t)) — T(x(t)) which means G(x(t)) is infinitesimally flexible

in R" for all positive t near 0. Therefore G(p) is infinitesimally flexible in R" by

Theorem 5.4.    □

We now show that the rigidity and the infinitesimal rigidity of a tensegrity

framework G(p) are equivalent for points p in general position for G. Thus again

we find that general position points play a role for tensegrity frameworks analo-

gous to that played by regular points for frameworks.

Theorem 5.8. Suppose G = (V; B, C, S) is an abstract tensegrity framework and

p G Rnv is in general position for G. Then G(p) is rigid in R" // and only if G(p) is

infinitesimally rigid in R".
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Proof. Theorem 5.7 gives one direction. Conversely, suppose that G(p) is

infinitesimally flexible in R". If G(p) is flexible in R" then G(p) is also, so we

suppose that G(p) is rigid in R". Since p is a regular point of G, G(p) is even

infinitesimally rigid in R". Let I(p) be the space of infinitesimal motions of G(p)

and let

A = {{i,j) G E = B u C U S: F,,,,, G 7(p)x}.

Obviously B c A and, moreover, A ^ E. For the infinitesimal flexibility of G(p)

says that there exists p G I(p) — T(p) and for thi. p there exists {&, m) G £ with

p • F<fc m) ^ 0 since G(p) is infinitesimally rigid in R". Next choose v G I(p) with

v ■ F{u} ¥■ 0 for all {i,j} G E - A. Then we have

[ = 0     for all {*,/} G A,

(.Pt - Pj) ■ (", - ",-)] < 0     for all \i,j) EC -A,

{ > 0     for all \i,j) G S - A.

We now "integrate" the infinitesimal flexing v to create a flexing of G(p).

UA=0 then

x(t) = p + tv = (p, + ft-,, . . . ,pv f tvv)

satisfies x(0) = p and, furthermore, x(t) G X(p) — M(p) for small positive ? since

the derivative of \\x¡(t) - Xj(t)\\2 at t = 0 is 2(p, - p,) • (v¡ - v.). Therefore G(p) is

flexible in R". Finally, suppose A is nonempty. Since p is in general position for G,

p is a point of maximum rank of dfA and therefore fA~\fA(p)) is a manifold nearp

whose tangent space atp is ker dfA(p). Since v E ker dfA(p) there exists a smooth

path x: R-*fA\fA(p)) with jc(0) = p and ^(0) - v. Then ||xf(0 - jc/0„2 -

\\Pi - Pj\\2 for au ' and all {/',./'} G A. And ||jc,.(0 - Xj(t)\\2 < ||p, - py||2 (respec-

tively, > ||p, — p7||2) for all small positive t and all {/,/} G C — /I (respectively,

5-/4). Therefore G(p) is flexible in R".    Q

The following result says that for a framework with "independent" edges,

replacing any edge with a cable or strut gives a flexible tensegrity framework.

Corollary 5.9. If G(p), G = (V, E), is a framework in R" with rank dfE(p) =

\E\ then G'(p) is a flexible tensegrity framework in R" where G' is obtained by

replacing any element of E by a cable or strut.

Proof. Since the framework G(p) admits only the trivial stress, G'(p) does not

have a proper stress and thus G'(p) is infinitesimally flexible in R" by Theorem 5.2.

But p is in general position for G since rank dfA(p) = |^4| for every nonempty

A c E. Therefore G'(p) is flexible in R" by Theorem 5.8.    □

We conclude this section with a look at the effect of projective maps on

tensegrity frameworks. We say that L is a projective map of R" if

Ax + b
Lx =-;    for x G R" with c ■ x + d =£ 0

c ■ x + d

where A : R" -> R" is a linear map, b, c ER", d ER and the map from Rn+ ' to

Rn + 1 given by
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is nonsingular. For our purposes, it is useful to think of projective maps in a

slightly different way. Consider a nonsingular linear map L: R" + 1 —> R"+1. For

x = (xx, . . . , xn) G R" let x = (xx, . . . , xn, I) E R"+l. Then the composition

x^x^Lx = (yx,. . .,yH+l) -»(-—-,..., —— 1 (5.1)
\sn+\ yn+\ I

defines the projective map L where Lx = (yx/y„ + x, ■ ■ ■ ,y„/y„+x) for x E R" with

the last coordinate yn+x of Lx nonzero.

G(p) G(q) G\q)

Figure 5.3

Consider p = (p,, . . . ,pv) and a = (qx, . . . , qv) in R"v. Suppose there exists a

projective map L of R" with Lp¡ = q¡ for 1 < i < v. For a framework G with v

vertices we have that G(p) is infinitesimally rigid in R" if and only if G(q) is

infinitesimally rigid in R". This result, which is sometimes referred to as the

projective invariance of infinitesimal rigidity, fails for tensegrity frameworks. For

example, consider the tensegrity frameworks G(p) and G(q) in R2 shown in Figure

5.3. There exists a projective map L of R2 with Lp¡ = q¿ for 1 < / < 4 where the

dotted line H shown is mapped by L into the "line at infinity". Clearly G(p) is

infinitesimally rigid in R2 while G(q) is infinitesimally flexible in R2. However, if we

replace the cable of G which crosses H in realization p by a strut and the strut of G

which crosses H in realization p by a cable then the resulting tensegrity framework

G'(q) shown in Figure 5.3 is infinitesimally rigid in R2. The final theorem of the

section shows such behavior is typical for tensegrity frameworks.

Theorem 5.10. Suppose p = (px, . . . ,pv), a = (a,, . . . , qv) E Rnv and there exists

a projective map L of R" with Lp¡ = q¡ for 1 < i < v. Let G = (V; B, C, S) be a

tensegrity framework with v vertices. Let G' = (V; B, C, S') be the tensegrity

framework obtained by replacing every cable {i,j} of G (respectively, strut {i,j) of

G) for which the line segment [p^Pj] intersects the hyperplane H mapped by L to

infinity by a strut (respectively, cable) and leaving the remaining members of G

unchanged. Then G(p) is infinitesimally rigid in R" if and only if G'(q) is infinitesi-

mally rigid in R".

Proof. Let L: R"+'^R"+I be the nonsingular linear map for which the

composition (5.1) gives L. Let A, be the (n + l)st coordinate of íp¡ E R"+1 for

1 < i < v. We first show that if co = ( . . . ,co{, n, . . . ) is a linear dependency

among the rows of dfE(p) where E = B (j C u S then co' = ( . . . ,\A.wf/ y>, . . . ) is
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a linear dependency among the rows of dfE(q) where E' = B \J C (J S' = E.

This is accomplished by letting the various maps in the composition (5.1) defining

L act on the matrix dfE(p).

First, since

2    <*{uyF{u) "    2    U{u}l ■ ■ ■ >Pt -Pj,--,Pj -p„ ... ) = o
■J}eE (Lj)eE

we have

2      «{*,;>( • ■ • >Pi - Pj, ■ • • >Pj - P„ ■ ■ • ) - 0
{iJ)eE

since the last coordinate of each p, is one. By the linearity of L we have

2      u{i,j}( ■ ■ ■ >ÏPi - ¿Pj' ■ ■ ■ , Lßj - Lßi, ■ ■ ■) = 0. (5.2)
[ijyeE

Summing over the /th (n + l)-tuple of columns of (5.2) gives

2 "{ij}{LPi - ¿Pj) = 0   for 1 < / < v. (5.3)

Summing over the last coordinate of the vector equation (5.3) gives the scalar

equation

2 «{/»(A, - A,) = 0   for 1 < i < v. (5.4)

By hypothesis the last coordinate \ of each Lpt is nonzero. We have

2 WlWli %T - IT J - °   for K / < « (5.5)
{J- (¡J)eB) \   *i Aj   J

since the left-hand side of equation (5.5) equals the product of A, and the vector in

(5.3) minus the product of the scalar in (5.4) and the vector Lp,. Thus

Since the last coordinate of each Lp¡/X¡ is one, co' = (. . . ,A,A,co{, y), . . . ) is a linear

dependency among the rows of dfE(q). Therefore rank dfE(p) > rank dfE,(q).

Next, observe that L"1 defines a projective map L~x by composition (5.1) with

L'q- = p- for 1 < / < ü. Moreover, A,-1 is the (n + l)st coordinate of L~lq¡ E

R"+l for 1 < ; < u. Thus if co' = ( . . . ,co'(, y), . . . ) is a linear dependency among

the rows of dfE(q) then co = ( . . . ,A,~'A,~'co',, n, . . . ) is a linear dependency among

the rows of dfE(p). Hence rank dfE(p) = rank dfE(q). Since the dimension of the

affine span of (p,, . . . ,pv) obviously equals that of {qx, . . . , qv), the "rigidity

predictor" ([1, Theorem] and [2, §3]) gives that the framework G(p) is infinitesi-

mally rigid in R" if and only if the framework G'(q) is infinitesimally rigid in R".

Finally, suppose the tensegrity framework G(p) is infinitesimally rigid in R".

Then G(p) is infinitesimally rigid in R" and there exists a proper stress co =

( . . . ,co(, n, . . . ) of G(p). Then co' = ( . . . ,A,A,co{, y}, . . . ) is a proper stress of

G'(q) since \Xj < 0 if and only if p, and p, lie on opposite sides of H, the
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hyperplane mapped to infinity by L. Therefore G'(q) is also infinitesimally rigid in

R". Conversely, if G'(q) is infinitesimally rigid in R" then a proper stress co' =

( . . . ,<û'tijy, . . . ) of G'(q) gives the proper stress co = ( . . . ,A,~'A,-'co'(,jy . . . ) of

G(p). Hence G(p) is infinitesimally rigid in R".    □

6. Tensegrity frameworks in the plane. We now apply the general results of the

previous sections to a number of very specific problems and questions concerning

tensegrity frameworks in the plane. Some of the methods used in this section arise

from joint work with Rachad Antonius and Janos Baracs of the Groupe de

Recherche Topologie Structurale. Much of the section deals with bracing convex

polygons whose edges are struts (or bars) by various cables across the interior of

the polygon. We begin with a method for combining two infinitesimally rigid

tensegrity frameworks in the plane. The result, although somewhat unwieldy to

formulate and prove, has interesting applications to convex polygons in the plane.

It was observed in examples by Janos Baracs and involves a form of circuit

exchange in the underlying combinatorial geometry.

Consider two infinitesimally rigid tensegrity frameworks G'(p') and G"(p") in

R2 which share some vertices (where we suppose the common vertices have the

same indices in G" and G"). Then any one member {k, m] which is a cable of G'

and a strut of G" can be deleted and a judicious choice of bars, cables and struts

for the remaining members gives an infinitesimally rigid tensegrity framework in

the plane. To minimize the possibility of confusion we assume the vertices of G'(p')

are distinct, i.e.,p,' ^ pj for i ¥=j, as are those of G"(p").

Theorem 6.1. Suppose G'(p') and G"(p") are infinitesimally rigid tensegrity

frameworks in R2 (where the vertices of G'(p') and also G"(p") are distinct and

indexed so that p[ = pj' if and only if i = j). Let E be the set of pairs of vertices which

are joined by a different member of G' than G ". That is, let

E = (B' n (C" u S")) u (C n (B" u s")) u {S' n (B" u C")).

Suppose {k, m) E (C n S") U (5" n C"). Let G = (V; B, C, S) where V = V

U V", B = B' u B" u E - {{k, m}}, C = C U C" - E and S = S' U S" -

E. Let p = ( . . . ,p¡, . . . ) where p, = p,' ///' G V and p, = p," ///' G V". Then G(p)

is an infinitesimally rigid tensegrity framework in R2.

Proof. Recall that in R2 we have p G T(p) if and only if p = (p,, . . . , pc) = (t

+ rp*, . . . ,t + rp*) where / G R2, r G R and (a, b)* = (b, -a) for (a, b) E R2.

Now we apply Theorem 5.2. By Corollary 5.3, G'(p') with bar {k, m) deleted is

infinitesimally rigid as is G"(p") with bar {k, m] deleted. This implies G(p) is

infinitesimally rigid. To see this, let p be an infinitesimal motion of G(p). Then

there exist /' G R2 and r' G R such that

p, = /' + r'p'*    for all i E V

since G'(p') with bar {k, m) deleted is infinitesimally rigid. Similarly, there exists

t" E R2 and r" G R such that

p, = t" + r"p¡'*    for all /' G V".
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For ; = k, m, we have /' + r'p[* = t" + r"p"* since p,' = p" = p,. Thus (/' — ;")

+ (r' — r")pf = 0 for i = k, m so (/ — r")(p^ — p*) = 0. Since pk ¥=pm we have

r' = r" and therefore f = t". Thus p, = t' + r'pf for all vertices p, of G(p) which

says p G T(p). Hence G(p) is infinitesimally rigid in R2.

To complete the proof we show that G(p) has a proper stress. Suppose {k, m] E

C n S". Since G'(p') is infinitesimally rigid there exists a proper stress co' of

G'(p') (so cojj.>m, < 0). Similarly, there exists a proper stress co" of G"(p") (so

C0{'*, m} > 0). By introducing zero coefficients for certain edges one can regard both

co' and u" as stresses of the tensegrity framework G(p) augmented by the bar

{k, m). It is then easy to check that

W(Vm}w'   -  «>'{k  m}C0"

is a proper stress of G(p).    □

The analog of Theorem 6.1 in R" is valid provided the two frameworks share n

vertices whose affine span has dimension n — 1. Theorem 6.1 and its higher

dimensional generalizations hold for rigidity also. That is, two rigid tensegrity

frameworks combine to give another rigid tensegrity framework.

The proof of Theorem 6.4 furnishes several examples of the use of Theorem 6.1.

Next we prove a technical lemma regarding the distribution of signs in the stress

coefficients at a vertex. This simple result is the two-dimensional analog of the

index lemma connected with Cauchy's rigidity theorem (for example, see [7,

Lemma 5.3] or [12, Theorem 6.1]).

Lemma 6.2. Suppose pj G R2 - {0} and co, G R - {0} for 1 < / < n. If 2J_, co^p,

= 0 then there does not exist a line through the origin such that {py Uj > 0} is

contained in one open half space determined by the line and {py. u>j < 0} is contained

in the other open half space.

Proof. If such a line exists then every co,p, belongs to one open half space and

thus 2"_ i UjPj ¥= 0.    □

We now focus on tensegrity frameworks in the plane of a rather special kind. A

tensegrity polygon G(p) is a tensegrity framework in R2 with the following proper-

ties:

(i) the vertices of G(p) are distinct and form the set of vertices of a convex

polygon P in the plane;

(ii) the struts of G(p) are the edges of P;

(iii) the set of bars of G is empty.

One consequence of this definition is that every cable of a tensegrity polygon runs

through the interior of P. A parallel theory develops if one considers convex

polygons with bars for edges and no struts. We make contact with this theory at the

end of the section.

Next we consider various schemes for producing infinitesimally rigid tensegrity

polygons. Our proofs rely on a vertex by vertex analysis of the signs of the

coefficients in a stress based on Lemma 6.2. But there are other possibilities. For

instance, one can employ Maxwell's theorem on projections of polyhedra to study
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stresses (in this theory proper stresses on tensegrity polygons with planar graphs

correspond to projections of convex polyhedra (see [16])) or one can examine in

detail the infinitesimal motions allowed by the members.

Figure 6.1

Perhaps the simplest tensegrity polygons are Grünbaum polygons introduced in [9]

which have cables joining one vertex to all the nonadjacent vertices of the polygon

and one additional cable joining the two vertices adjacent to that vertex. See Figure

6.1 where as usual struts are indicated by double lines and cables by dashes.

Actually, it is no harder to prove the infinitesimal rigidity of generalized Grünbaum

polygons in which two adjacent vertices are chosen and every other vertex is joined

by a cable to exactly one of these two vertices (as shown in Figure 6.2).

Figure 6.2

Theorem 6.3. Generalized Grünbaum polygons are infinitesimally rigid in R2.

Proof. Let G(p) be the generalized Grünbaum polygon shown in Figure 6.2.

Clearly the framework G(p) is infinitesimally rigid in R2 since it can be built up

fr. m the triangle p, p2 P3 by the addition of two-valent vertices (with one bar left

over at the end). This extra bar is essential since its presence guarantees that G(p)

has a nontrivial stress. We have rank dfE(p) = 2v — 3 where E is the set of bars of

G since G(p) is infinitesimally rigid in R2 (see [2, Equation 2, §3] or [13, §6.1] and

[14, Corollary 5.2]). But dfE(p) has 2v — 2 rows, one for each bar of G, and thus

there exists a nontrivial linear dependency among the rows of dfE(p), i.e., a
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nontrivial stress « = (... ,«,, J}, . . . ) of G(p). We need only verify that co (or its

negative) is a proper stress of C7(p). By applying Lemma 6.2 to the three-valent

vertices p3, . . . , pv, we find that the two edges of the polygon (the struts) incident

with the vertex are of one sign while the remaining member (the cable) incident

with the vertex has the opposite sign. Another application of Lemma 6.2 shows that

[px,p2] has the same sign as all the other struts of G(p). Therefore ±co is a proper

stress of G(p) and thus G(p) is infinitesimally rigid by Theorem 5.2.    □

The flexible tensegrity polygon shown in Figure 6.3 demonstrates the necessity of

the requirement that the two vertices to which all others are joined by cables in

generalized Grünbaum polygons be consecutive vertices.

Figure 6.3

We next consider Cauchy polygons which are tensegrity polygons G(p) of the

kind shown in Figure 6.4 with cables joining vertices p, andp3, p2 andp4, . . . ,pv^2

andp„. As Grünbaum [9, p. 2.13] observes, the rigidity of Cauchy polygons follows

from standard arguments related to Cauchy's rigidity theorem. Connelly [5, Theo-

rem 4.1] establishes the infinitesimal rigidity of Cauchy polygons by examining

their infinitesimal motions. Our approach to the infinitesimal rigidity of Cauchy

polygons is based on the observation that Grünbaum polygons and Cauchy

polygons are related to each other in a simple way. Indeed, one can get from the

Grünbaum polygon in Figure 6.1 to the Cauchy polygon in Figure 6.4 by simply

replacing cable {2, 5} by {3, 5}, cable (2, 6} by {4, 6}, . . . , cable {2, e} by

{v — 2, v}. Thus of the v — 2 cables, v — 4 have been replaced while cables (1, 3}

and {2, 4} remain unchanged. We now show that mixed polygons, obtained by

terminating the replacement procedure at any stage, are infinitesimally rigid in R2.

p2 p.

Figure 6.4
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Theorem 6.4. Suppose the i cables {2, 5}, {2, 6}, . . . , (2, i + 4} of a Grünbaum

polygon have been replaced by the cables (3, 5}, {4, 6}, . . . , {i + 2, i + 4). Then

the resulting mixed polygon is infinitesimally rigid in R2.

Proof. We use induction on the number i of replacements and employ Theorem

6.1. For one replacement, the resulting mixed polygon is infinitesimally rigid since

it is the combination (in the sense of Theorem 6.1) of the Grünbaum polygon in

Figure 6.1 and the Grünbaum polygon shown in Figure 6.5. Note that member

{2, 5} disappears since it is a cable in the former and a strut in the latter.

Pi

Figure 6.5

Suppose all mixed polygons obtained by no more than /' replacements are

infinitesimally rigid and consider the mixed polygon shown in Figure 6.6 obtained

by the i + 1 replacements {2, 5} by {3, 5}, {2, 6} by {4, 6}, . . . , {2, i + 5} by

{/ + 3, i' + 5}. The mixed polygon in Figure 6.6 is the combination (in the sense of

Theorem 6.1) of the mixed polygons shown in Figure 6.7. The mixed polygon in (a)

involves only i replacements and thus is infinitesimally rigid. And the Cauchy

polygon in (b) with vertices p2,p3, • • • >P, + 5 is obtained from the corresponding

Grünbaum polygon by i replacements (when the Grünbaum polygon is cabled

from vertex p3). Therefore the mixed polygon in Figure 6.6 is infinitesimally rigid

by Theorem 6.1.    □

Figure 6.6
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P/+«

|P,-t

\Ä
2 (a) (b)

Figure 6.7

One might hope that the replacements involved in passing from Grünbaum to

Cauchy polygons need not be done sequentially. However, the tensegrity hexagon

G(p) shown in Figure 6.8 which is obtained from a Grünbaum polygon with six

vertices by replacing cable (2, 6} by {4, 6} is infinitesimally flexible in R2. In fact,

p, = p2 = p3 = 0 and p4 = p5 = p6 as shown is an infinitesimal flexing of C7(p).

Figure 6.8

Note that the various schemes for generating infinitesimally rigid tensegrity

polygons previously considered work for all convex realizations of the polygon.

Their infinitesimal rigidity is independent of vertex location, edge lengths and other

metric properties of the realization of the convex polygon. Grünbaum [9, p. 2.13]

asks if this is typical. That is, if G(p) and G(q) are tensegrity polygons, are they

either simultaneously rigid or simultaneously flexible? Actually Griinbaum's ques-

tion was posed for tensegrity polygons with bars as edges of the polygons and no

struts, but it makes no difference-the answer in both cases is negative.

Example 6.5. Consider the tensegrity hexagon G(p) shown in Figure 6.9. Since

|F| = 10 = 2v — 2, G(p) admits a nontrivial stress for all values of x. The idea is

that when x = 2 classical results about realizations of the complete bipartite graph

A"33 in the plane (see [3, Theorem 14] or [13, Example 2.4]) give a non trivial stress

of G(p) with zero coefficient for the bar {1, 5). It would not be surprising if the
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coefficient of this bar changes sign at x = 2. Solving for the set of dependencies

co = ( . . . ,co{,JY . . .) among the rows of the matrix dfE(p) where E is the set of

bars of G, we find that for x =h 1, — 2 the stresses of G(p) are of the form

«{1,2}  =  «{2,3}  = «{3,4}  — t0{4,5}  = A,

«{1,4} = «{2,5} - -A/2, C0{lj6) = co,5i6} = A/ (x -  1),

«{i,5} = A(* - 2)/2(x - 1),       co{3,6) = -2A/ (x + 2)

where A is an arbitrary real number. For x = 3/2 the tensegrity polygon G(p) is

infinitesimally rigid in R2 since G(p) is infinitesimally rigid and any positive A gives

a proper stress of G(p). On the other hand, G(p) is infinitesimally flexible in R2

when x = 3 since the sign of «m« is then opposite to the signs of the coefficients

of the other cables of G(p) for all nontrivial stresses. Note also that for both values

of x the form of the stresses implies that rank dfA(p) = \A\ for every proper subset

A of E. Thus x = 3/2 leads to a point p in general position as does x = 3.

Therefore G(p) is rigid for x = 3/2 and flexible for x = 3 by Theorem 5.8. (G(p)

is also flexible for x = 2 but verifying this is messy since p is not in general position

when x = 2.) Furthermore, all our conclusions hold whether the six edges of the

hexagon are bars or struts.

p4 = M.]) p5 =(i, i)

Pf, = (*, o)

p2 = (-i,-i) p, =(i,-i).

Figure 6.9

Little seems to be known about what distinguishes cabling schemes which give

infinitesimally rigid tensegrity polygons for all convex realizations from those that

do not.

Finally, the results of this paper shed some light on what is perhaps the least

understood of the conjectures of Grünbaum [9, Conjecture 6, p. 2.14]. This

conjecture deals with tensegrity polygons G(p) with bars as edges of the polygon

(and no struts) and says that if G(p) is rigid in R2 then so is the tensegrity

framework G'(p) obtained by replacing the bars of G(p) by. cables and the cables

of G(p) by bars. The fact that the converse of the conjecture is known to be false

(see Example 6.7 or [9, Figure 13]) adds to the mystery surrounding this conjecture.

We here prove the infinitesimal version of the conjecture and offer a conjecture of

our own.

Theorem 6.6. Let G(p) be a tensegrity polygon with bars rather than struts as

edges of the polygon and at least four vertices. If G(p) is infinitesimally rigid in R2

then the tensegrity framework G'(p) with B' = C, C = B and S' = 0 is also

infinitesimally rigid in R2.

P3=(-2,0)CY-
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Proof. Since G(p) is infinitesimally rigid, G(p) is infinitesimally rigid and G(p)

has a proper stress co = ( . . . ,«„», . . . ) by Theorem 5.2. The infinitesimal rigidity

of G(p) together with the fact that v > 4 implies C 7= 0. Thus there exists a vertex

having at least one cable incident with it. Since the stress is proper all the cables

incident with this vertex have negative coefficients. Therefore, by Lemma 6.2, the

two edges of the polygon (the bars) incident with this vertex have positive

coefficients. Applying Lemma 6.2 to the consecutive vertices of the polygon, we

find that all the bars {i,j} of the tensegrity polygon have w^n > 0. Of course, all

the cables have negative coefficients since the stress is proper. Since G'(p) = G(p)

is infinitesimally rigid and — co is a proper stress of G'(p), G'(p) is infinitesimally

rigid in R2.    □

Clearly what makes this argument work is the fact that the existence of a stress

with negative coefficients for all interior members implies that all the edges of the

polygon have positive coefficients. However, the existence of a stress with negative

coefficients for all the edges of a polygon does not force all the interior members to

have positive coefficients. This accounts for the failure of the converse of Theorem

6.6, an example of which we now give.

Example 6.7. Let G(p) be the tensegrity hexagon of Example 6.5 with x = 3 and

bars instead of struts for the six edges of the hexagon. Then G'(p) is infinitesimally

rigid in R2 since G'(p) is infinitesimally rigid and any A < 0 gives a proper stress of

G'(p). But, as we saw in Example 6.5, G(p) is infinitesimally flexible in R2 when

x = 3.

Of course, Theorem 6.6 and its converse are both valid for tensegrity polygons

with struts as edges of the polygon. This is just a special case of the "interchangea-

bility" of struts and cables in an infinitesimally rigid tensegrity framework which

was mentioned following Definition 4.1.

We conclude this section with a conjecture which, if correct, would establish

Griinbaum's Conjecture 6.

Conjecture. Rigidity and infinitesimal rigidity are equivalent for tensegrity poly-

gons with bars as edges of the polygon.

7. Tensegrity frameworks in space. Interest in tensegrity frameworks in the plane

and, in particular, tensegrity polygons stems partly from their connection with the

infinitesimal rigidity of certain tensegrity frameworks in R3 arising from convex

polyhedra. As was suggested by Grünbaum [9, p. 2.12] and confirmed by Whiteley

[15, Corollary 3.5 ».id Corollary 3.6] and Connelly [5, Theorem 5.1], a convex

polyhedron with faces that are infinitesimally rigid tensegrity polygons forms an

infinitesimally rigid tensegrity framework in space. In this setting the infinitesimal

rigidity of the spacial tensegrity framework follows from the planar infinitesimal

rigidity of its faces.

The same methods establish a variety of results of the same type (see [15,

Corollary 3.5]). For example, suppose G(p) is a tensegrity framework in R3

satisfying the following properties:

(i) the vertices of G(p) are distinct and their affine span is R3;

(ii) every vertex of G(p) belongs to an edge of the convex hull P of p,, . . . , pv (so

no vertex lies in the interior of a face of P or in the interior of P);
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(iii) [Pj,Pj] is contained in dP for every member {i,j} of G (so no member of G

passes through the interior of P);

(iv) for each face of P, the set of vertices and members of G(p) which belong to

the face forms an infinitesimally rigid tensegrity framework in the plane of the face.

Then G(p) is infinitesimally rigid in R3. Either the infinitesimal motions of

Connelly or the statics of Whiteley can be used to prove this result. In both cases,

the proof is based on Alexandrov's rigidity theorem which says that a triangulated

convex polyhedron with all its vertices on the natural edges of the polyhedron is

infinitesimally rigid in R3 (see [2, §6, Corollary 1] or [15, Theorem 3.1]). In the

proof it is not necessary to show the existence of a proper stress (although by

Theorem 5.2 the existence of a proper stress is a consequence of the result).

On the other hand, proper stresses can be used in various ways to establish the

infinitesimal rigidity of certain tensegrity frameworks which have some faces that

fail to be infinitesimally rigid in the plane. One very simple way to construct such

examples relies on the fact that the addition of stresses of the individual faces can

lead to a stress of the entire tensegrity framework with a rather bizarre distribution

of signs.

Example 7.1. Consider the tensegrity cube G(p) in R3 shown in Figure 7.1. Each

face of the cube is braced by both diagonals. The top and bottom faces consist

entirely of cables while the four remaining faces have struts for diagonal braces.

Since a nontrivial stress of the doubly braced square in the plane has coefficients of

one sign for the two diagonals and opposite sign for the four edges of the square,

the sum of four such stresses gives a stress of G(p) with appropriate signs on all but

the top and bottom faces of the cube. Adding suitably small stresses of the top and

bottom faces leads to a proper stress of G(p). The infinitesimal rigidity of G(p) is a

consequence of Alexandrov's rigidity theorem. By Theorem 5.2, G(p) is infinitesi-

mally rigid in R3 even though the top and bottom faces of G(p) are obviously

flexible in the plane.

A—  —^-jd

Figure 7.1

More exotic examples can be created with the help of the following general

theorem for modifying an infinitesimally rigid tensegrity framework. We say that a

subset F of the set B of bars of a tensegrity framework G(p) in R" is free if there

exists a proper stress co of C7(p) with F n supp co = 0. The idea of our next result

is that some of the free bars of an infinitesimally rigid tensegrity framework G(p)
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can be replaced by suitably chosen cables and struts and a cable or strut of G(p)

can be deleted in such a way that the resulting tensegrity framework is also

infinitesimally rigid.

Theorem 7.2. Suppose G'(p') is an infinitesimally rigid tensegrity framework in R"

where the set F' c B' of bars of G'(p') is free. Suppose the tensegrity framework

G"(p") has no bars (B" = 0), its vertices are a subset of the set of vertices of G'(p')

(where the vertices of G'(p') and also G"(p") are distinct and indexed so that

p¡ = pj if and only if i = j) and there exists a proper stress co" of G"(p"). Suppose

{k, m) E (C n S") U (S' n C"). Consider G = (V; B, C, S) with V = V, B =

(C n S") u (S' n C") u (B' - (F' n £")) - {{*, m}},  c = (C n C") u (F'
n C") U (C" - £") U (C - E") and S = (S' n S") U (F' n S") U (S" - E')

U (S' — E") where E' and E" are the members of G' and G", respectively. Then

G(p') is infinitesimally rigid in R".

Proof. Let co' be a proper stress of G'(p') with F' n supp co' = 0. We regard

both co' and co" as stresses of the framework given by G(p') together with the bar

{k, m). Suppose that {k, m) E C n S" so «'{¿jm) < 0 while «{'^,m) > 0. Then one

can verify without difficulty that

«  =  «{'A:,m}«'   -  «{A,»-}«"

is a proper stress of G(p'). Furthermore, the framework G'(p') with bar {k, m)

deleted is infinitesimally rigid in R" by Corollary 5.3 and therefore G(p') is also

infinitesimally rigid in R" since it has even more bars. Thus G(p') is infinitesimally

rigid in R" by Theorem 5.2.    □

Theorem 7.2 can be used in place of Theorem 6.1 to prove the infinitesimal

rigidity of mixed polygons in Theorem 6.4. Several applications of Theorem 7.2 are

involved in the construction of our next example which is an infinitesimally rigid

tensegrity cube for which every face is flexible in the plane.

Example 7.3. Consider the infinitesimally rigid tensegrity cube G'(p') shown in

Figure 7.2 where every face except the front one is braced by a single bar. Note

that the set B' of all bars of G'(p') is free. Next consider the planar tensegrity

framework G"(p") shown in Figure 7.2. Letting p" coincide with the top face of

a'(p') g"(j>")

Figure 7.2
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G'(p') and combining G'(p') and G"(p") by Theorem 7.2, we obtain the infinitesi-

mally rigid tensegrity framework G'"(p') shown in Figure 7.3. Now letp" coincide

with a side face of G'"(p') and again apply Theorem 7.2. Continuing in this fashion

for both the other side and the bottom face, we arrive at the infinitesimally rigid

tensegrity cube G(p') shown in Figure 7.3. Note that G(p') has 3v — 5 members,

only one of which is a bar. It is easy to continue the procedure for another step and

find an infinitesimally rigid tensegrity cube with 3t; — 4 members, none of which

are bars. We do not know if there exists an infinitesimally rigid tensegrity cube

with 3ü — 5 members and no bars.

C'V) G(p')

Figure 7.3

We conclude with a short discussion of tensegrity frameworks in R3 arising from

the complete bipartite graph KS5. Consider a (framework) realization G(p) of K5 5

in R3 such that both five-sets of vertices have affine span R3 and all ten vertices do

not lie in a quadric surface in R3. Then the stress space of G(p) is one-dimensional

and the framework G(p) is infinitesimally rigid in R3 (see [3, Example 17]).

Moreover, the stresses of G(p) are quite easy to describe (and even to compute).

Suppose a,, . . . , a5 and bx, . . . , b5 are the two five-sets of vertices. Let

(a,, . . . , a5) be an affine dependency of (a,, . . . , a5), which means 2¿=, a¡a¡ = 0

and 2'=, a, = 0. Let (ßx, . . . , ßs) be an affine dependency of (bx, . . . , b5). Then

it is a simple matter to verify that assigning coefficient a¡Bj to edge [a,, by] for

1 < i,j < 5 gives a stress of G(p). Introducing cables and struts in accordance with

the signs of the products a,/?, leads to an infinitesimally rigid tensegrity framework

in R3 by Theorem 5.2.
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