Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unflat connections in $ 3$-sphere bundles over $ S\sp{4}$


Authors: Andrzej Derdziński and A. Rigas
Journal: Trans. Amer. Math. Soc. 265 (1981), 485-493
MSC: Primary 53C05; Secondary 55R10
DOI: https://doi.org/10.1090/S0002-9947-1981-0610960-4
MathSciNet review: 610960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper concerns connections in $ 3$-sphere bundles over $ 4$-manifolds having the property of unflatness, which is a necessary condition in order that a natural construction give a Riemannian metric of positive sectional curvature in the total space. It is shown that, as conjectured by A. Weinstein, the only $ 3$-sphere bundle over $ {S^4}$ with an unflat connection is the Hopf bundle.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [2] L. Bérard Bergery, Sur certaines fibrations d'espaces homogènes riemanniens, Compositio Math. 30 (1975), 43-61. MR 0370432 (51:6659)
  • [3] M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa 15 (1961), 179-246. MR 0133083 (24:A2919)
  • [4] D. Gromoll and W. Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401-406. MR 0375151 (51:11347)
  • [5] N. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435-441. MR 0350657 (50:3149)
  • [6] D. Husemoller, Fibre bundles. McGraw-Hill, New York, 1966. MR 0229247 (37:4821)
  • [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York and London, 1963. MR 0152974 (27:2945)
  • [8] J. Milnor, Spin structures on manifolds, Enseign. Math. 9 (1963), 198-203. MR 0157388 (28:622)
  • [9] J. Milnor and J. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [10] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 0200865 (34:751)
  • [11] A. Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978), 187-193. MR 0464254 (57:4188)
  • [12] I. Tamura, On Pontrjagin classes and homotopy types of manifolds. J. Math. Soc. Japan 9 (1957), 250-262. MR 0091475 (19:975b)
  • [13] A. Weinstein, Fat bundles and symplectic manifolds, Advances in Math, (to appear). MR 591728 (82a:53038)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C05, 55R10

Retrieve articles in all journals with MSC: 53C05, 55R10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0610960-4
Keywords: Unflat connection, positive sectional curvature, $ 3$-sphere bundle
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society