Uniqueness of invariant means for measure-preserving transformations

Author:
Joseph Rosenblatt

Journal:
Trans. Amer. Math. Soc. **265** (1981), 623-636

MSC:
Primary 28D15; Secondary 43A07, 58F11

DOI:
https://doi.org/10.1090/S0002-9947-1981-0610970-7

MathSciNet review:
610970

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For some compact abelian groups (e.g. , , and ), the group of topological automorphisms of has the Haar integral as the unique -invariant mean on . This gives a new characterization of Lebesgue measure on the bounded Lebesgue measurable subsets of , ; it is the unique normalized positive finitely-additive measure on which is invariant under isometries and the transformation of . Other examples of, as well as necessary and sufficient conditions for, the uniqueness of a mean on , which is invariant by some group of measure-preserving transformations of the probability space , are described.

**[1]**S. Banach,*Sur le problème de la mesure*, Oeuvres, Vol. I, PWN, Warsaw, 1967, pp. 318-322.**[2]**A. del Junco and J. Rosenblatt,*Counterexamples in ergodic theory and number theory*, Math. Ann.**245**(1979), 185-197. MR**553340 (81d:10042)****[3]**E. Granirer,*Criteria for compactness and for discreteness of locally compact amenable groups*, Proc. Amer. Math. Soc.**40**(1973), 615-624. MR**0340962 (49:5712)****[4]**F. P. Greenleaf,*Invariant means on topological groups and their applications*, Van Nostrand, New York, 1969. MR**0251549 (40:4776)****[5]**V. Losert and H. Rindler,*Almost invariant sets*(preprint). MR**608100 (82i:43001)****[6]**E. Marczewski (Szprilrajn),*Problem*, The Scottish Book, 1937-1938.**[7]**J. Mycielski,*Equations insoluable on**and related problems*, Amer. Math. Monthly**84**(1977), 723-726;**85**(1978), 263-265. MR**0470100 (57:9867)****[8]**-,*Finitely-additive invariant measures*. I, Colloq. Math.**42**(1979), 309-318. MR**567569 (82g:43003a)****[9]**-,*Finitely-additive invariant measures*. III, Colloq. Math, (to appear). MR**567575 (82g:43003b)****[10]**I. Namioka,*Følner's conditions for amenable semigroups*, Math. Scand.**15**(1964), 18-28. MR**0180832 (31:5062)****[11]**J. Rosenblatt,*Finitely-additive invariant measures*. II, Colloq. Math.**42**(1979), 361-363. MR**567575 (82g:43003b)****[12]**-,*Invariant means for the bounded measurable functions on a non-discrete locally compact group*, Math. Ann.**220**(1976), 219-228. MR**0397305 (53:1164)****[13]**W. Rudin,*Invariant means on*, Studia Math.**44**(1972), 219-227. MR**0304975 (46:4105)****[14]**K. Schmidt,*Asymptotically invariant sequences and an action of**on the**-sphere*(preprint).**[15]**-,*Amenability, Kazhdan's property*,*strong ergodicity, and invariant means for ergodic actions*(preprint).**[16]**D. Sullivan,*For**there is only one finitely-additive rotationally invariant measure on the**-sphere defined on all Lebesgue measurable sets*, Bull. Amer. Math. Soc. (N.S.)**1**(1981), 121-123. MR**590825 (82b:28035)****[17]**S. Trott,*A pair of generators for the unimodular group*, Canad. Math. Bull.**5**(1962), 245-252. MR**0141716 (25:5113)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28D15,
43A07,
58F11

Retrieve articles in all journals with MSC: 28D15, 43A07, 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0610970-7

Article copyright:
© Copyright 1981
American Mathematical Society