ON TWO-DIMENSIONAL NORMAL SINGULARITIES
OF TYPE \(*A_n*, *D_n* AND \(*E_n*\)

BY

SHIGEKI OHYANAGI

Abstract. Let \(G \) be the weighted dual graph associated with a contractible curve \(A = \bigcup A_i \). There are many combinations of the weights \(A_i \cdot A_j \) which make the graph contractible. If \(G \) is a graph which is the weighted dual graph for a rational singularity with any combination of the weights, then \(G \) is either \(*A_n*, *D_n* or \(*E_n*\).

1. Introduction. Let \(A = \bigcup A_i \), where \(A_i \) are its irreducible components, lie on a nonsingular complex surface \(X \). The curve \(A \) is said to be contractible (exceptional) if there exists a holomorphic mapping \(\pi: \tilde{X} \to X \) of the surface \(\tilde{X} \) into a complex space \(X \) that maps the whole curve \(A \) into one point \(x \in X \) and is biholomorphic on \(\tilde{X} - A \). In [5], it was proved that a curve \(A \) is contractible if and only if the intersection matrix \((A_i \cdot A_j)\) is negative-definite. The point \(x \) in \(X \) is an isolated singular point, in general, and the mapping \(\pi: \tilde{X} \to X \) is a resolution of this singularity. The topological nature of the embedding of \(A \) in \(\tilde{X} \) is described by the weighted dual graph \(G \) (see [9]). The vertices of \(G \) correspond to the \(A_i \). The edges of \(G \) connecting the vertices corresponding to \(A_i \) and \(A_j \), \(i \neq j \), correspond to the points \(A_i \cap A_j \). Finally, associated to each \(A_i \) is its genus as a Riemann surface, its singularities, and its weight, \(A_i \cdot A_i \), the topological self-intersection number. The \(G \) will denote the graph, along with the genera, the singularities and the weights.

The geometric genus of \((X, x)\) which is obtained from \((\tilde{X}, A)\) by blowing down \(\pi: \tilde{X} \to X \) is defined by \(p_g(X, x) = \dim_{\mathbb{C}}(R^1\pi_*\mathbb{C}_X) \). The geometric genus is in fact a finite integer.

Let \(G(a_1, \ldots, a_n) \) denote the weighted dual graph associated with a contractible curve \(A = \bigcup A_i \), where \(a_i \) represents the weight of the corresponding component \(A_i \). There are many other combinations of the weights \((a_i', \ldots, a_n')\) which make the graph \(G(a_1', \ldots, a_n') \) to be contractible. We shall denote by \(p_g(a_1, \ldots, a_n) \) the geometric genus of the \((X, x)\) obtained from a contractible graph \(G(a_1, \ldots, a_n) \).

Then, we want to prove that there will be an integer \(m \) such that \(p_g(a_1, \ldots, a_n) \leq m \), for any \((a_1, \ldots, a_n)\). Let \(M \) be the smallest one among such integers. In this paper, we decide all those graphs which have \(M = 0 \). Namely, we enumerate all the graphs which are the weighted dual graphs for rational singularities, with any combination of the weights.
Preliminaries and main theorems. In [2], Artin has studied the rational double points. He has shown that if \(x \) is a rational double point, then the weighted dual graph associated to \((X, x)\) is one of the graphs \(A_n, n > 1; D_n, n > 4; E_6; E_7; E_8 \) as follows.

Let \(A_n, n > 1, \) be

\[
\begin{array}{c}
 \circ - \circ - \cdots - \circ \\
\end{array}
\]

\((n\text{-vertices}) \)

\(D_n, n > 4, \) be

\[
\begin{array}{c}
 \circ - \circ - \cdots - \circ \\
 \circ
\end{array}
\]

\((n\text{-vertices}) \)

and \(E_n, n = 6, 7 \) and 8, be

\[
\begin{array}{c}
 \circ - \circ - \circ - \cdots - \circ \\
\end{array}
\]

\((n\text{-vertices}) \)

where each vertex represents a nonsingular rational curve with self-intersection number \(-2\).

The quotient singularities are well known examples of rational singularities, which are defined as follows. For a two-dimensional normal singularity \((X, x)\), there is a finite subgroup of \(\text{GL}(2, \mathbb{C}) \) such that the quotient space of \(\mathbb{C}^2 \) by this group with a singular point at the origin is analytically isomorphic to \((X, x)\).

In [3], Brieskorn has enumerated the weighted dual graphs for quotient singularities. There are seventeen types of graphs, and each of them has the same type as the rational double points up to the weights.

In §2, we consider those graphs each of which has the same type as the rational double points up to the weights. Our graphs consist of only nonsingular rational curves. We may assume that each weight of our graphs is less than or equal to \(-2\), since we may assume that \(\pi: \tilde{X} \to X \) is the minimal resolution of \((X, x)\). We can say that our graphs are those ones which are generalized from the quotient singularities' graphs.

One can easily check that our graphs are always contractible. Hence we need not feel concern for contractibility of our graphs. We shall denote them by \(\ast A_n, \ast D_n, \ast E_6, \ast E_7 \) and \(\ast E_8 \). For these graphs, the following theorem is proved.

Theorem A. Each of the graphs \(\ast A_n, n > 1; \ast D_n, n > 4; \ast E_n, n = 6, 7 \) and 8, is the weighted dual graph for a rational singularity.
In §§3 and 4, we recall the method in determining the graphs A_n, D_n, E_n. If G is the weighted dual graph for a rational double point then each vertex of G corresponds to a nonsingular rational curve with self-intersection number -2. Since each of the graphs \tilde{A}_n, \tilde{D}_n, \tilde{E}_n (described as follows) is not contractible, G cannot have them as its proper subgraphs. And then, G is either A_n, D_n or E_n.

\tilde{A}_n, $n > 1$:

![Diagram of \(\tilde{A}_n\)]

$(n + 1)$-vertices,

\tilde{D}_n, $n > 4$:

![Diagram of \(\tilde{D}_n\)]

$(n + 1)$-vertices,

\tilde{E}_6:

![Diagram of \(\tilde{E}_6\)]

\tilde{E}_7:

![Diagram of \(\tilde{E}_7\)]

\tilde{E}_8:

![Diagram of \(\tilde{E}_8\)]

where each vertex corresponds to a nonsingular rational curve with self-intersection number -2.

We consider those graphs, contractible, each of which has the same type as the graphs \tilde{A}_n, \tilde{D}_n, \tilde{E}_n up to the weights. We may assume that each weight is less than or equal to -2. Such graph, however, is not always contractible. But one can easily check that such graph is contractible if and only if there is at least one vertex whose weight is less than or equal to -3. We denote these contractible graphs by \tilde{A}_n, $n > 1$; \tilde{D}_n, $n > 4$; \tilde{E}_n, $n = 6, 7$ and 8.
There is a characterization of these graphs as follows. Let G be a graph which is not of type A_n, D_n, E_n. Suppose that any connected proper subgraph of G is one of the graphs A_n, D_n, E_n. Then G is one of the graphs A_n, D_n, E_n.

For these graphs, the following theorem is proved.

Theorem B. For each of the graphs A_n, $n > 4$; E_n, $n = 6, 7$ and 8, the associated two-dimensional normal singularity is as follows:

1. if all of the vertices of the graphs have the weights -2, then it is a minimally elliptic singularity (see [12]),
2. otherwise, it is a rational singularity.

Remark. The graph of type A_n is the weighted dual graph of a cusp singularity, for any combination of the weights, and this is always minimally elliptic.

In §5, we decide all those graphs with $M = 0$.

Theorem C. They are of types A_n, $n > 1$; D_n, $n > 4$; E_n, $n = 6, 7, 8$.

Remark. The graph of type A_n is the weighted dual graph of a cyclic quotient singularity, for any combination of the weights.

I wish to thank the referee for pointing out the relationship between my work and that of Dolgachev.

2. **Geometric genera of D_n, E_6, E_7 and E_8.** For D_n, E_6, E_7 and E_8, we can use the following theorem, proved by Watanabe [16, Theorem 2.21], to calculate the geometric genera of these normal singularities, since they are star-shaped.

Let A_0 be the center of the star-shaped weighted dual graph. The branches of the graph are indexed by i, $1 < i < m$. The curves of the ith branch are denoted by A_i, $1 < j < r_i$, where A_{i1} intersects A_0 and A_{ij} intersects $A_{i, j+1}$. Let $-b = A_0 - A_0$ and $-b_j = A_{ij} - A_{ij}$, Finally, set $a_i/a_j = [b_{i1}, b_{i2}, \ldots, b_{ir_i}]$, continued fraction, with $a_i > a_j$ and a_i and a_j are relatively prime integers.

For any $k > 0$, let $D^{(k)}$ be the divisor on A_0:

$$D^{(k)} = kD - \sum_{i=1}^{m} \frac{(k\beta_i + a_i - 1)/a_i} P_i,$$

where D is any divisor such that $\mathcal{O}(D)$ is the conormal sheaf of A_0, $P_i = A_0 \cap A_{i1}$, and for any $a \in \mathbb{R}$, $[a]$ is the greatest integer less than or equal to a.

Theorem 2.1. The geometric genus of such singularity is

$$\sum_{k > 0} \dim \Gamma(A_0, \mathcal{O}(K_{A_0} - D^{(k)})),$$

where K_{A_0} is the canonical line bundle of A_0.

As for D_n, E_6, E_7 and E_8, any vertex corresponds to a nonsingular rational curve, so we have the following by the Riemann-Roch Theorem.

$$\dim \Gamma(A_0, \mathcal{O}(K_{A_0} - D^{(k)})) = (c(k) + 1 + |c(k) + 1|)/2,$$

where $c(k)$ denotes the first Chern class of $K_{A_0} - D^{(k)}$, i.e., $c(k) = -2 - bk + \sum_{i=1}^{m}[(k\beta_i + a_i - 1)/a_i]$, and for any $a \in \mathbb{R}$, $|a|$ is the absolute value of a.
We say \((X, x)\) is rational if \(p_g(X, x) = 0\).

Theorem 2.2. Let \((X, x)\) be a two-dimensional normal singularity whose minimal resolution is of type either \(\ast D_n\), \(\ast E_6\), \(\ast E_7\) or \(\ast E_8\). Then \((X, x)\) is rational.

Proof. In order to prove this, it is sufficient to prove that \(c(k) < -1\) for all \(k > 0\). Each graph has three branches

\[
c(k) = -2 - bk + \sum_{i=1}^{3} \left[\frac{(k\beta_i + \alpha_i - 1)}{\alpha_i} \right] = 1 - bk + \sum_{i=1}^{3} \left[\frac{(k\beta_i - 1)}{\alpha_i} \right],
\]

since \(\left[\frac{(k\beta_i + \alpha_i - 1)}{\alpha_i} \right] = \left[\frac{1 + (k\beta_i - 1)}{\alpha_i} \right] = 1 + \left[\frac{(k\beta_i - 1)}{\alpha_i} \right], 1 < i < 3\).

The following lemma is trivial.

Lemma 2.3. Let \(p_i > 2, 1 < i < r, \) be integers. Then the continued fraction

\[
\left[\frac{p_1, p_2, \ldots, p_r}{} \right] > \left[\frac{2, 2, \ldots, 2}{} \right] = \left(\frac{r + 1}{r} \right).
\]

By this lemma, we can see as follows.

(i) For \(\ast D_n\), \(c(k) < 1 - 2k + \frac{2k + 1 + (k(n - 3) - 1)}{(n - 2)} = -1 - \frac{n(n - 2)}{2} < 0\), since \(n > 4\). Thus \(c(k) < -1\) for all \(k > 0\).

(ii) For \(\ast E_6\), \(c(k) < 1 - 2k + \frac{2k + (k - 1)/2 + (4k - 2)/3}{(k - 1)/2} = -(k + 1)/6 < 0\). Thus \(c(k) < -1\) for all \(k > 0\).

(iii) For \(\ast E_7\), \(c(k) < 1 - 2k + \frac{2k + (k - 1)/2 + (4k - 2)/3 + (3k - 1)/4}{(k - 1)/2} = -(k + 1)/12 < 0\). Thus \(c(k) < -1\) for all \(k > 0\).

(iv) For \(\ast E_8\), \(c(k) < 1 - 2k + \frac{2k + (k - 1)/2 + (4k - 2)/3 + (4k - 1)/5}{(k - 1)/2} = -(k + 1)/30 < 0\). Thus \(c(k) < -1\) for all \(k > 0\).

Therefore \(p_g(X, x) = 0\). Q.E.D.

3. \(\ast A_n, n > 1; \ast D_n, n > 4; \ast E_6; \ast E_7; \ast E_8\). Recall that if a weighted dual graph \(G\) consists of only such vertices that correspond to nonsingular rational curves with self-intersection number \(-2\), then \(G\) does not contain proper subgraphs of type \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) or \(\ast E_8\). And then \(G\) is either \(A_n, D_n, E_6, E_7\) or \(E_8\). This is proved by the contractibility for weighted dual graphs. In this section, we consider those contractible graphs which are of type \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) and \(\ast E_8\). We shall denote them by \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) and \(\ast E_8\). One can easily check that \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) and \(\ast E_8\), too) is contractible if and only if there is at least one vertex whose weight is less than or equal to \(-3\). These graphs have the following properties.

Let \(G\) be a connected graph. Suppose that any connected proper subgraph of \(G\) is of type either \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) or \(\ast E_8\).

Theorem 3.1. We assume that \(G\) is neither \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) nor \(\ast E_8\). Then \(G\) is necessarily one of the \(\ast A_n, \ast D_n, \ast E_6, \ast E_7\) or \(\ast E_8\).
Proof. (I) If \(G \) has a cyclic chain \(\bullet \tilde{A}_n \) as its subgraph, then \(G \) cannot have other vertex. Because if there exists other vertex, then the cyclic chain is a proper subgraph of \(G \). Thus in this case, \(G \) is a cyclic chain, i.e., \(G \) is of type \(\bullet \tilde{A}_n \).

(II) When \(G \) contains no cyclic chain, \(G \) is tree-shaped. If there are more than two branching vertices then there is a proper subgraph with two branching vertices, which is a contradiction. Thus there are at most two branching vertices. If there is no branching vertex then \(G \) is \(\bullet A_n \), a contradiction. Thus there is at least one branching vertex.

(i) In the case of two branching vertices, there is \(\bullet \tilde{D}_n \) as a subgraph of \(G \). Similarly to (I), \(G \) is \(\bullet \tilde{D}_n \).

(ii) In the case of one branching vertex, if there are more than 4 branches in \(G \) then there is \(\bullet \tilde{D}_4 \) as a subgraph of \(G \). Hence \(G \) is \(\bullet \tilde{D}_4 \), in this case. If there are at most two branches then \(G \) is \(\bullet \tilde{A}_n \). So we have that there are 3 branches in \(G \). In each branch, if there are more than two vertices then there is \(\bullet \tilde{E}_6 \) as a proper subgraph of \(G \). Hence there is at least one branch which has less than 3 vertices.

Let \((m_1, m_2, m_3) \) denote the numbers of vertices in the 3 branches. We may assume that \(1 < m_1 < m_2 < m_3 \).

If \(m_1 = 2, m_2 > 3 \), then \(G \supset \bullet \tilde{E}_6 \).

If \(m_1 = m_2 = 2, m_3 > 3 \), then \(G \supset \bullet \tilde{E}_7 \).

If \(m_1 = 1, m_2 = 2, m_3 > 6 \), then \(G \supset \bullet \tilde{E}_8 \).

Therefore,

\[
(m_1, m_2, m_3) = \begin{cases} (1, 3, 3) \cdots \bullet \tilde{E}_7, \\ (1, 2, 5) \cdots \bullet \tilde{E}_8, \\ (2, 2, 2) \cdots \bullet \tilde{E}_6. \end{cases}
\]

Q.E.D.

Remark. \((m_1, m_2, m_3) = (1, 2, 4) \cdots \bullet \tilde{E}_8 \), \((1, 2, 3) \cdots \bullet \tilde{E}_7 \), \((1, 2, 2) \cdots \bullet \tilde{E}_6 \) and \((1, 1, m) \cdots \bullet D_{m+1} \) (\(m > 1 \)).

4. Geometric genera of \(\bullet \tilde{D}_n \), \(\bullet \tilde{E}_6 \), \(\bullet \tilde{E}_7 \) and \(\bullet \tilde{E}_8 \). Let \(G \) be a cyclic chain \(\bullet \tilde{A}_n \). Such graph is the weighted dual graph for a cusp singularity; see [7], [8] and [11]. Cusp singularities are elliptic (those for which \(p_g = 1 \)), furthermore they are minimally elliptic; see [12].

In this section, we investigate those graphs of type \(\bullet \tilde{D}_n \), \(n > 4 \); \(\bullet \tilde{E}_n \), \(n = 6, 7 \), and 8.

Notations and definitions. Let \(\bullet \tilde{D}_n \), \(n > 4 \), be

and \(a_i = -A_i \cdot A_i \), \(0 < i < n \).
Let \tilde{E}_6 be

Let \tilde{E}_7 be

Let \tilde{E}_8 be

4.1. For \tilde{D}_n, the following are proved.

Lemma 4.1.1 (Wagreich [15]). If $a_{n-3} = a_{n-2} = a_{n-1} = a_n = 2$, then the associated singularity is rational.

Lemma 4.1.2. If $a_0 = a_1 = \cdots = a_{n-4} = 2$, then the associated singularity is minimally elliptic.

Proof. Let $a_0 = a_1 = \cdots = a_{n-4} = 2$. Then we can simply calculate the fundamental cycle Z over the graph by using a computation sequence; see [10]. It is $Z = 2A_0 + 2A_1 + \cdots + 2A_{n-4} + A_{n-3} + A_{n-2} + A_{n-1} + A_n$. Then $p(Z) = 1 + (Z \cdot Z + Z \cdot K)/2 = 1$, since $Z \cdot Z = \sum_{j=n-3} A_j \cdot A_j + 2 = -Z \cdot K$. Any connected proper subgraph of \tilde{D}_n is of type $\star A_k$ or $\star D_k$. So by Theorem 2.2, the associated singularity is minimally elliptic. Q.E.D.

The rest is the following.

(i) $(a_0, a_1, \ldots, a_{n-4}) \neq (2, 2, \ldots, 2)$ and

(ii) $(a_{n-3}, a_{n-2}, a_{n-1}, a_n) \neq (2, 2, 2, 2)$.

Let G denote a weighted dual graph of type \tilde{D}_n with (i) and (ii). Then we define another weighted dual graph of type \tilde{D}_n such that $A_i' \cdot A_i' = A_i \cdot A_i$, for $0 < i < n - 4$ and $A_j' \cdot A_j' = -2$, for $n - 3 < j < n$. We shall denote this graph by G'. Since G' succeeds the condition (i), G' is contractible. We know that the associated singularity with G' is rational by Lemma 4.1.1.
Let $Z = \sum_{i=0}^{n} z_i A_i$ be the fundamental cycle over G (the existence and uniqueness are certified). Then there is a positive cycle Z' over G', defined by $\sum_{i=0}^{n} z_i A_i'$. Now, by the definition of G', we have that $A_i \cdot Z' = A_i \cdot Z$ and $A_i \cdot K = -A_i \cdot A_i - 2 = -A_i' \cdot A_i' - 2 = A_i' \cdot K'$, for $0 \leq i \leq n - 4$, where K (K' resp.) is the canonical line bundle of G (G' resp.).

On the other hand, for $n - 3 < j < n$,

$$A_j \cdot (Z + K) = z_j A_j \cdot A_j + z_0 (or \ z_{n-4}) - A_j \cdot A_j - 2.$$

By the hypothesis (ii), there is A_{j_0} at least one, such that $A_{j_0} \cdot A_{j_0} < -3$. Set $A_{j_0} \cdot A_{j_0} = -2 - a_{j_0}$; then $a_{j_0} > 1$.

$$A_{j_0} \cdot (Z + K) = z_0 (or \ z_{n-4}) - 2z_{j_0} - (z_{j_0} - 1)a_{j_0} \leq z_0 (or \ z_{n-4}) - 2z_{j_0} = A_{j_0}' \cdot (Z' + K'),$$

since $(z_{j_0} - 1)a_{j_0} > 0$. So

$$p(Z) = 1 + \left(\sum_{i=0}^{n-4} z_i A_i \cdot (Z + K) + \sum_{j=n-3}^{n} z_j A_j \cdot (Z + K) \right)/2$$

$$= 1 + \left(\sum_{i=0}^{n-4} z_i A_i' \cdot (Z' + K') + \sum_{j=n-3}^{n} z_j A_j \cdot (Z + K) \right)/2$$

$$< 1 + \left(\sum_{i=0}^{n-4} z_i A_i' \cdot (Z' + K') + \sum_{j=n-3}^{n} z_j A_j' \cdot (Z' + K') \right)/2$$

$$= p(Z').$$

As G' is the weighted dual graph for a rational singularity, we have $p(D) < 0$ for any positive cycle D on G'.

Hence $p(Z) < p(Z') < 0$, and then $p(Z) = 0$. Namely the associated singularity with G is rational.

Therefore, we have proved the following theorem.

Theorem 4.1.3. For \tilde{D}_n, $n > 4$,

(1) $a_0 = a_1 = \cdots = a_{n-4} = 2 \Rightarrow (X, x)$ is minimally elliptic,

(2) otherwise $\Rightarrow (X, x)$ is rational.

Corollary 4.1.4. \tilde{D}_n is a weighted dual graph for a hypersurface isolated singularity if and only if $a_0 = a_1 = \cdots = a_{n-4} = 2$ and $9 < a_{n-3} + a_{n-2} + a_{n+1} + a_n < 11$.

Proof. A hypersurface isolated singularity is a Gorenstein singularity. A Gorenstein rational singularity is a rational double point. Thus if \tilde{D}_n is a hypersurface isolated singularity then $a_0 = a_1 = \cdots = a_{n-4} = 2$. By Laufer [12], a minimally elliptic singularity is a hypersurface isolated singularity if and only if $Z \cdot Z$ is restricted by $-3 < Z \cdot Z < -1$. Now we have $Z \cdot Z = 8 - a_{n-3} - a_{n-2} - a_{n-1} - a_n$. Hence the corollary is proved. Q.E.D.
4.2. For $\tilde{\mathcal{E}}_6$, we can apply Theorem 2.1 since it is star-shaped. So $p_6(\tilde{\mathcal{E}}_6) = \sum_{k>0} c(k) + 1 + |c(k) + 1|)/2$, where

$$c(k) = -2 - bk + \sum_{i=1}^{3} \left[(k\beta_i + \alpha_i - 1)/\alpha_i \right] = 1 - bk + \sum_{i=1}^{3} \left[(k\beta_i - 1)/\alpha_i \right];$$

see the proof of Theorem 2.2.

THEOREM 4.2.1. For $\tilde{\mathcal{E}}_6$,

(1) $b = b_{11} = b_{21} = b_{31} = 2 \Rightarrow (X, x)$ is minimally elliptic,

(2) otherwise $\Rightarrow (X, x)$ is rational.

PROOF. Suppose that $b > 3$. By Lemma 4.1.2, $\alpha_i/\beta_i > [2, 2] = 3/2$ for $1 < i < 3$, so we have $c(k) < 1 - bk + 3 \cdot [(2k - 1)/3] < -bk + 2k = (2 - b)k$. One can easily check that $c(0) = -2$ and $c(k) < 0$ for all $k > 1$. Hence in this case, $p_6(\tilde{\mathcal{E}}_6) = 0$.

When $b = 2$,

$$c(k) \leq 1 - 2k + 3 \cdot [(2k - 1)/3] \leq 1 - 2k + 3 \cdot (2k - 1)/3 = 0.$$

Hence we have that $p_6(\tilde{\mathcal{E}}_6) = \# \{k > 0 : c(k) = 0 \}$. Therefore we must decide the integer k and types of branches (α_i, β_i), $1 < i < 3$, which simultaneously satisfy the two equalities. The equality (2) holds when $2k \equiv 1 \pmod{3}$, i.e., $k = 3l + 2, l > 0$.

The next lemma is very useful to prove our theorems.

We recall the lexicographical order for n-tuple integers.

DEFINITION 4.2.2. Let p_i, q_i be integers which are greater than or equal to 2, $1 < i, j < n$. Then $(p_1, \ldots, p_n) <_{\text{lex}} (q_1, \ldots, q_n)$ if there is an index i_0, $1 < i_0 < n$, such that (i) $p_i = q_i$ for all $i < i_0$, and (ii) $p_{i_0} < q_{i_0}$.

LEMMA 4.2.3. If $(p_1, \ldots, p_n) <_{\text{lex}} (q_1, \ldots, q_n)$, then the associated continued fractions hold $[p_1, \ldots, p_n] < [q_1, \ldots, q_n]$.

PROOF. By the definition, it is sufficient to prove that if $p_1 < q_1$ then $[p_1, \ldots, p_n] < [q_1, \ldots, q_n]$.

As $[p_1, \ldots, p_n] = p_1 - [p_2, \ldots, p_n]^{-1}$ and $[p_2, \ldots, p_n] > n/(n - 1) > 1$ by Lemma 2.3, we have $p_1 - 1 < [p_1, \ldots, p_n] < p_1$. Similarly $q_1 - 1 < [q_1, \ldots, q_n] < q_1$. Now $p_1 < q_1 - 1$. Thus we have the lemma. Q.E.D.

According to the contractibility, we cannot have $\alpha_1/\beta_1 = \alpha_2/\beta_2 = \alpha_3/\beta_3 = [2, 2] = 3/2$. So we may assume that $\alpha_1/\beta_1 > [2, 3] = 5/3$ since there is at least one branch $(b_{11}, b_{12}) >_{\text{lex}} (2, 2)$.

If $k = 3l + 2, l > 1$, then $[(k\beta_1 - 1)/\alpha_1] < [(3k - 1)/5] = [(9l + 5)/5] = 1 + [9/5] < 2l + 2 = [(2k - 1)/3]$.

So the equality (1) does not hold.

Set $k = 2$. We have the following lexicographical order

$$(2, 3) < \cdots < (2, m) < \cdots < (3, 2) < \cdots.$$

If $(b_{11}, b_{12}) >_{\text{lex}} (3, 2)$, i.e., $\alpha_1/\beta_1 > [3, 2] = 5/2$, then $[(2\beta_1 - 1)/\alpha_1] = [(2 \cdot 2 - 1)/5] = 0 < 1 = [(2 \cdot 2 - 1)/3]$.

Thus the equality does not hold.
If \((b_{11}, b_{12}) = (2, m)\), i.e., \(\alpha_1/\beta_1 = (2m - 1)/m, m \geq 3\), then
\[
[(2\beta_1 - 1)/\alpha_1] = [(2m - 1)/(2m - 1)] = 1 = [(2 \cdot 2 - 1)/3].
\]
Therefore the equalities \(1\) and \(2\) hold at the same time if and only if
\(k = b_{11} = b_{21} = b_{31} = 2\). And then, we have the theorem.

One can easily check that \(\tilde{E}_6\) with \(p_g = 1\) is minimally elliptic by Theorem 2.2.

Corollary 4.2.4. \(\tilde{E}_6\) is the weighted dual graph for a hypersurface isolated singularity if and only if \(b = b_{11} = b_{21} = b_{31} = 2\) and \(7 < b_{12} + b_{22} + b_{32} < 9\).

The proof of this is similar to the proof of Corollary 4.1.4.

4.3.

Theorem 4.3.1. For \(\tilde{E}_7\),

1. \(b = b_{11} = b_{21} = b_{22} = b_{32} = 2 \Rightarrow (X, x)\) is minimally elliptic,
2. otherwise \(\Rightarrow (X, x)\) is rational.

Proof. Suppose that \(b \geq 3\). Since \(\alpha_2/\beta_2, \alpha_3/\beta_3 \geq [2, 2, 2] = 4/3\) and \(\alpha_1/\beta_1 = b_{11} \geq 2\), we have that \(c(k) < 1 - bk + [(k - 1)/2] + 2 \cdot [(3k - 1)/4] < 1 - bk + (k - 1)/2 + (3k - 1)/2 = (2 - b)k\). So \(c(k) < (2 - b)k < 0\) for \(k \geq 1\) and \(c(0) = -2\). Hence \(p_g(\tilde{E}_7) = 0\).

Let \(b = 2\). Then
\[
c(k) \leq 1 - 2k + [(k - 1)/2] + 2 \cdot [(3k - 1)/4] \\
\leq 1 - 2k + (k - 1)/2 + (3k - 1)/2 = 0
\]
holds.

Similarly to the proof of Theorem 4.2.1, we should find when the equalities \(1\) and \(2\) are simultaneously satisfied.

The equality \(2\) holds when \(3k \equiv 1 \pmod{4}\), i.e., \(k = 4l + 3, l \geq 0\).

If we suppose that \(b_{11} \geq 3\) then \([(4l + 3 - 1)/b_{11}] < [(4l + 2)/3] < (4l + 2)/3 < 2l + 1 = [(4l + 3 - 1)/2]\). Thus we must have \(b_{11} = 2\) in order to hold the equality \(1\). Then, by the contractibility, there is at least one integer which is greater than or equal to 3 among \(\{b_j\}\). We may assume that \((b_{21}, b_{22}, b_{23}) \neq (2, 2, 2)\) without loss of the generality, i.e., \(\alpha_2/\beta_2 \geq [2, 2, 3] = 7/5\).

At first, we consider the equality \(1\) for \(k = 4l + 3, l \geq 1\). Then we have that
\[
[(k\beta_2 - 1)/\alpha_2] < [(5k - 1)/7] = [(20l + 14)/7] < (20l + 14)/7 < 3l + 2.
\]
On the other hand, \([(3k - 1)/4] = [(12l + 8)/4] = 3l + 2\). So the equality \(1\) does not hold in this case. Let \(k = 3\). If \(\alpha_2/\beta_2 \geq [2, 3, 2] = 8/5\), then \([(3\beta_2 - 1)/\alpha_2] < [(3 \cdot 5 - 1)/8] = 1 < 2 = [(3 \cdot 3 - 1)/4]\). So the equality \(1\) does not hold. Let \(\alpha_2/\beta_2 = [2, 2, m]\) with \(m \geq 3\), i.e.,
\[
\alpha_2/\beta_2 = (3m - 1)/(2m - 1).
\]
Then we have the equality \(1\) since \([(3\beta_2 - 1)/\alpha_2] = [(6m - 4)/(3m - 2)] = 2\).

Therefore we have the equalities \(1\) and \(2\) if and only if \(k = 3\) and \(b = b_{11} = b_{21} = b_{22} = b_{31} = b_{32} = 2\), and then complete the proof of theorem, by Theorem 2.2. Q.E.D.
Corollary 4.3.2. \(\tilde{E}_7 \) is the weighted dual graph for a hypersurface isolated singularity if and only if \(b = b_{11} = b_{21} = b_{22} = b_{31} = b_{32} = 2 \) and \(5 < b_{23} + b_{33} < 7 \).

4.4. Finally we consider the graph of type \(\tilde{E}_8 \).

Theorem 4.4.1. For \(\tilde{E}_8 \),

1. \(b = b_{11} = b_{21} = b_{22} = b_{31} = b_{32} = b_{33} = b_{34} = 2 \Rightarrow (X, x) \) is minimally elliptic,
2. otherwise \((X, x) \) is rational.

Proof. Suppose \(b > 3 \). Since \(\alpha_1/\beta_1 = b_{11} > 2 \), \(\alpha_2/\beta_2 > [2, 2] = 3/2 \) and \(\alpha_3/\beta_3 > [2, 2, 2, 2, 2] = 6/5 \), we have that

\[
\begin{align*}
c(k) &< 1 - bk + [(k - 1)/2] + [(2k - 1)/3] + [(5k - 1)/6] \\
&< 1 - bk + (k - 1)/2 + (2k - 1)/3 + (5k - 1)/6 = (2 - b)k.
\end{align*}
\]

So \(c(k) < 0 \) for all \(k > 1 \) and \(c(0) = -2 \). Hence \(p_g(\tilde{E}_8) = 0 \).

Let \(b = 2 \). Then

\[
\begin{align*}
c(k) &< 1 - 2k + [(k - 1)/2] + [(2k - 1)/3] + [(5k - 1)/6] \\
&< 1 - 2k + (k - 1)/2 + (2k - 1)/3 + (5k - 1)/6 = 0.
\end{align*}
\]

The equality \(2 \) holds when \(k \) satisfies that \(2k \equiv 1 \) (mod 3) and \(5k \equiv 1 \) (mod 6), i.e., \(k = 6l + 5 \), \(l > 0 \).

If we suppose that \(b_{11} \geq 3 \) then we have the following equalities and inequalities.

\[
\begin{align*}
[(k\beta_1 - 1)/\alpha_1] &= [(k - 1)/b_{11}] < [(k - 1)/3] < (6l + 4)/3 < 2l + 2 \\
&< 3l + 2 = [(6l + 4)/2].
\end{align*}
\]

Thus we have \(b_{11} = 2 \) in order to hold the equality \(1 \). If we suppose that \((b_{21}, b_{22}) \neq (2, 2) \) then

\[
\begin{align*}
[(k\beta_2 - 1)/\alpha_2] &< [(3k - 1)/5] = [(18l + 14)/5] < (18l + 14)/5 \\
&< 4l + 3 = [(2 \cdot (6l + 5) - 1)/3].
\end{align*}
\]

So we get \(b_{21} = b_{22} = 2 \) for the equality \(1 \). Then the contractibility implies \((b_{31}, b_{32}, b_{33}, b_{34}, b_{35}) \neq (2, 2, 2, 2, 2) \). By Lemma 4.2.3, \(\alpha_3/\beta_3 > [2, 2, 2, 2, 3] = 11/9 \). Then \([(k\beta_3 - 1)/\alpha_3] < [(9k - 1)/11] = [(54l + 44)/11] < 5l + 4 = [(5k - 1)/6] \). If \(l > 1 \), then \([(54l + 44)/11] < 5l + 4 \). Hence we need to consider only the case of \(k = 5 \). And then, for \(\alpha_3/\beta_3 > [2, 2, 2, 3, 2] = 14/11 \),

\[
[(5\beta_3 - 1)/\alpha_3] < [54/14] = 3 < 4.
\]

Let \(\alpha_3/\beta_3 = [2, 2, 2, 2, m] = (5m - 4)/(4m - 3), m > 3 \). In this case, we have \([(5\beta_3 - 1)/\alpha_3] = [(20m - 16)/(5m - 4)] = 4 \), and the equality holds. Therefore we can complete the proof of the theorem by Theorem 2.2. Q.E.D.

Corollary 4.4.2. \(\tilde{E}_8 \) is the weighted dual graph for a hypersurface isolated singularity if and only if \(b = b_{11} = b_{21} = b_{22} = b_{31} = b_{32} = b_{33} = b_{34} = 2 \) and \(b_{35} \) is restricted as follows: \(3 < b_{35} < 5 \).
5. Proof of Theorem C. In this section, we consider those contractible graphs \(G(...)\) with \(M = 0\), where \(M\) is defined in §1. Since \(G\) associates to a rational singularity, it consists of only nonsingular rational curves and has only normal crossings.

Lemma 5.1. Let \(G(...)\) be such a graph, and \(G'(...)\) be a connected proper subgraph of \(G(...)\). Then \(G'(...)\) is also such a graph.

This is an application of the following.

Theorem [16, Theorem 2.8]. Let \(A\) be a contractible curve. Let \(A'\) be a connected proper subvariety of \(A\). Then for the associated \((X, x)\) to \(A\), and \((X', x')\) to \(A'\), \(p_g(X' \cdot x') < p_g(X, x)\) holds.

From this lemma and Theorem B, we have the following lemma.

Lemma 5.2. Let \(G\) be such a graph. Then it cannot contain graphs \(\hat{A}_n\), \(\hat{D}_n\), \(\hat{E}_t\), \(\hat{E}_7\) or \(\hat{E}_8\) as its subgraphs.

Such graph is either \(\hat{A}_n\), \(\hat{D}_n\), \(\hat{E}_6\), \(\hat{E}_7\) or \(\hat{E}_8\). Therefore, by Theorem A, we complete the proof of Theorem C.

Remark. Theorem B gives examples of the graphs with \(M = 1\).

6. Bimodular singularities. In this section, we shall note the relationship between our results and that of Dolgachev [4].

In Corollaries 4.2.4, 4.3.2 and 4.4.2, we describe 14 distinguished dual graphs of normal surface singularities with embedding dimension 3. These are exactly the graphs of the 14 exceptional bimodular singularities constructed by Dolgachev.

More precisely the relation is described by the following list, where the symbols \(\hat{E}_n\) and \(b_j\) are those used in §4 and others are those of Arnold [1].

<table>
<thead>
<tr>
<th>(b_{12})</th>
<th>(b_{22})</th>
<th>(b_{32})</th>
<th>(b_{23})</th>
<th>(b_{33})</th>
<th>(b_{35})</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 6 graphs of type \(\hat{D}_4\) described in Corollary 4.1.4 also correspond to an interesting group of 6 bimodal singularities in Arnold’s classification.

For graphs \(\hat{D}_n\), \(n > 4\), the quadruples \((2, 2, 3, 3)\) and \((2, 2, 3, 4)\) will give two types for each quadruple.
In this way, one get the following 8 series of singularities, where the notations with double indexes are described in [13].

<table>
<thead>
<tr>
<th>\tilde{D}_4</th>
<th>\tilde{D}_{1+4}, $1 \leq i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>a_2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

References

Institute of Mathematics, Faculty of Science, University of Tsukuba, Sakura-mura Ibaraki-gun, Ibaraki 305, Japan