Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ C\sp{\ast} $-extreme points


Authors: Alan Hopenwasser, Robert L. Moore and V. I. Paulsen
Journal: Trans. Amer. Math. Soc. 266 (1981), 291-307
MSC: Primary 46L05; Secondary 47D20
DOI: https://doi.org/10.1090/S0002-9947-1981-0613797-5
MathSciNet review: 613797
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{A}$ be a $ {C^ \ast }$-algebra and let $ \mathcal{S}$ be a subset of $ \mathcal{A}$. $ \mathcal{S}$ is $ {C^ \ast }$-convex if whenever $ {T_1},{T_2}, \ldots ,{T_n}$ are in $ \mathcal{S}$ and $ {A_1}, \ldots ,{A_n}$ are in $ \mathcal{A}$ with $ \sum\nolimits_{i = 1}^n {A_i^ \ast {A_i} = I} $, then $ \sum\nolimits_{i = 1}^n {A_i^ \ast {T_i}{A_i}} $ is in $ \mathcal{S}$. An element $ T$ in $ \mathcal{S}$ is called $ {C^ \ast }$-extreme in $ \mathcal{S}$ if whenever $ T = \sum\nolimits_{i = 1}^n {A_i^ \ast {T_i}{A_i}} $ with $ {T_i}$ and $ {A_i}$ as above and with $ {A_i}$ invertible, then $ {T_i}$ is unitarily equivalent to $ T$ for each $ i$. We investigate the linear extreme points and $ {C^ \ast }$-extreme points for three sets: first, the unit ball of operators in Hilbert space; next, the set of $ 2 \times 2$ matrices with numerical radius bounded by $ 1$; and last, the unit interval of positive operators on Hilbert space. In particular we find that for the second set, the linear and $ {C^ \ast }$-extreme points are different.


References [Enhancements On Off] (What's this?)

  • [1] William Arveson, Subalgebras of $ {C^ \ast }$-algebras. II, Acta Math. 128 (1972), 271-308. MR 0394232 (52:15035)
  • [2] Nelson Dunford and Jacob T. Schwartz, Linear operators, Vol. 1, Interscience, New York, 1958.
  • [3] Paul R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [4] Richard I. Loebl and Vern I. Paulsen, Some remarks on $ {C^ \ast }$-convexity, J. Linear Algebra Appl. 35 (1981), 63-78. MR 599846 (82b:46077)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05, 47D20

Retrieve articles in all journals with MSC: 46L05, 47D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0613797-5
Keywords: Numerical radius, $ {C^ \ast }$-convex set, $ {C^ \ast }$-extreme point
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society