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PROJECITVE GEOMETRY ON PARTIALLY ORDERED SETS

BY

ULRICH FAIGLE AND CHRISTIAN HERRMANN

Abstract. A set of axioms is presented for a projective geometry as an incidence

structure on partially ordered sets of "points" and "lines". The axioms reduce to

the axioms of classical projective geometry in the case where the points and lines

are unordered. It is shown that the lattice of linear subsets of a projective geometry

is modular and that every modular lattice of finite length is isomorphic to the

lattice of linear subsets of some finite-dimensional projective geometry. Primary

geometries are introduced as the incidence-geometric counterpart of primary

lattices. Thus the theory of finite-dimensional projective geometries includes the

theory of finite-dimensional projective Hjelmslev-spaces of level « as a special case.

Finally, projective geometries are characterized by incidence properties of points

and hyperplanes.

1. Introduction. Veblen and Young's [20] classical approach to projective geome-

try views a projective space as an incidence structure involving "points" and

"lines" subject to certain requirements. If a projective space is finite dimensional,

its lattice of linear subsets is modular, complemented, and of finite length. In fact,

every modular complemented lattice of finite length may (up to isomorphism, of

course) be understood as the lattice of linear subsets of a unique finite-dimensional

projective space (see Birkhoff [3, p. 93]). A third aspect of projective geometry

derives from the fact that a projective space may be coordinatized over some

(skew) field provided its incidence structure is rich enough. In this case the lattice

of linear subsets essentially is the lattice of subspaces of some vector space over the

coordinatizing field.

Baer [2] took the latter observation as a starting point for widening the scope of

projective geometry: he studied the lattice of submodules of a finitely generated

module over a completely primary uniserial ring and obtained a theory which

includes the theory of classical projective geometry and the theory of finite abelian

groups as special cases (see also, e.g., Inaba [9], Ribeiro [19], Jónsson and Monk

[10]).
Thereby it was noted that not just the atoms but also certain other join-irreduci-

ble elements of a primary lattice behave like points of a projective geometry. On

the other hand, Kurinnoi [14] observed that two finite modular lattices are

isomorphic if and only if their partially ordered sets of all elements that are joins of

at most two join-irreducible elements are isomorphic. For complemented modular
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320 ULRICH FAIGLE AND CHRISTIAN HERRMANN

lattices, Kurinnoi's result follows immediately from the fact that a projective space

is determined by the incidence structure of its points and hnes.

Thus the question arises: Does there exist a theory of projective incidence

geometry which, in particular, allows us to understand the set of all join-irreducible

elements of a modular lattice of finite length as the set of points of some

finite-dimensional projective space?

We present a system of axioms for such a projective geometry on partially

ordered sets of points and lines in §3. The crucial property of a classical projective

incidence geometry is expressed in Veblen and Young's "triangle axiom". In the

general context, however, one quickly recognizes that the triangle axiom in its usual

form is too restrictive to be satisfied. It is therefore surprising that a general

projective incidence geometry does have a property which reduces to the classical

triangle axiom in the case of unordered points and hnes. This is stated in our axiom

(A7). We then show in §4 that there is a correspondence between projective

geometries and modular lattices of finite length in the same way as between

classical projective geometries and complemented modular lattices of finite length.

In §5 primary geometries are introduced as the incidence-geometric counterpart of

primary lattices. Generalizations of projective incidence geometries have been

looked at before: projective Hjelmslev spaces may be seen that way (see, e.g.,

Klingenberg [12], [13], Lück [15], and Artmann [1]). As an example, we will

indicate in §6 how projective Hjelmslev planes of level n can be interpreted as

special instances of our primary geometries. Finally, in §7, we will characterize

projective geometries by incidence properties of points and hyperplanes. Those

properties may be taken as axioms for a theory of "subprojective geometries" in the

sense of Markowsky and Petrich [16].

In passing we mention the connection between the projective geometries intro-

duced here and the geometries on partially ordered sets of Faigle [8]. The latter

extend the concept of a matroid from unordered ground sets to partially ordered

sets. Thus, in the same way as a matroid may be thought of as a generalization of a

projective geometry, those geometries on partially ordered sets are generalizations

of projective geometries on partially ordered sets.

2. Preliminaries. This section collects some basic definitions and properties of

partially ordered sets, especially modular lattices, that we will use in the sequel

without further reference. Proofs of the statements can be found in Birkhoff [3] or

Crawley and Dilworth [4].

A chain of a partially ordered set P is a subset of pairwise comparable elements

of P. The length of a chain is its cardinality minus one. By the height rip) of an

element p E P we understand the length of the longest chain in P with maximal

element/». This number is well defined if P is of finite length, i.e., if the lengths of

the chains of P are bound by some natural number. If P in particular is a lattice,

we will use the term "rank" instead of "height". r(P) = max{r(p): p E P} is the

height (rank) of P.

An (order) ideal of P is a subset A with the property that p < q implies p G A

whenever q E A.
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The element y covers the element x in P if the interval [x,y] = {z E P:

x < z < y} of P consists of just the two elements x and y. We denote this by

x «< y.

The dual of P is the set P with the inverted order.

If the lattice M is of finite length, M is in particular complete, i.e., join and meet

of every subset of M exist. So M has a maximal element 1 and a minimal element

0. Moreover, every element of M is a join of finitely many join-irreducible elements

and, dually, a meet of finitely many meet-irreducible elements. Here we call an

element x =£ 0 join-irreducible if x = y V ¿ always implies x = y or x = z. Meet-

irreducible elements are defined dually.

A lattice M is modular if for all x,y, z E M, x < z implies (x + y)z = x + yz.

Note that in a modular lattice we use the notation x + y (xy) for the join (meet) of

the elements x and_y.

A modular lattice M of finite length is also characterized by a property of the

rank function:

for all x, y EM,    r(x + y) + r(xy) = r(x) + r(y).

Two intervals of a modular lattice of the form [ab, b] and [a, a + b] are

projective. Projective intervals always are isomorphic.

In a modular lattice of finite length, the number of elements in any irredundant

representation of the element x by join-irreducible elements is unique by the

theorem of Kuros and Ore. We call this number the (Kuros-Ore) dimension d(x) of

x. Thus x is join-irreducible if d(x) = 1. If furthermore r(x) = 1, x is an atom.

We finally prove two useful facts about modular lattices.

Lemma 2.1. Let M be any modular lattice andp, q,p < q, join-irreducible elements

of M. Then q < x + p implies q < x for all x E M.

Proof. Since M is modular, q = (p + x)q = p + xq. Hence q = xq because q

was join-irreducible.    □

Lemma 2.2. Let M be any modular lattice and C any maximal chain of M. Then

the length of M equals the length of C when C is of finite length.

Proof. Proof of [3, Theorem 14, p. 40].   □

3. Projective incidence geometries on partially ordered sets. We give in this section

a set of axioms for a projective geometry whose points and lines are partially

ordered, and we derive the fundamental properties of the lattice of linear subsets of

such a geometry. In the special case of trivially ordered sets those axioms are easily

seen to be equivalent to the axioms of classical incidence geometry as given by

Veblen and Young [20]. Note that, in general, a line need not be incident with at

least three points. We will, however, study an important class of geometries

satisfying the analogue of the latter property, the primary geometries, in §5.

From the outset we impose a finiteness condition on the geometry to be defined

and assume that the partially ordered set of points is of finite length. What happens

without any finiteness condition will be briefly outlined at the end of §4.
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The symbol " E " is used both with the usual meaning and with the understand-

ing of an incidence relation between points and hnes. This should cause no

confusion.

Let P and L he two disjoint partially ordered sets of points and lines, respec-

tively, and E c P X L an incidence relation between points and lines such that

the following axioms hold:

(Al) For/j < q E P, g E L, q E g implies/» E g. For g < m E L,p E P,p E g

implies/» Em.

(AI) Any two noncomparable points /» and q are incident with a unique line,

denoted/» V <7> such that for every line g,p, q E g implies p \/ q < g.

(A3) Every line g is of the form g = p\/ q for some noncomparable points/» and

q-

(A4) If/» V q is a line and/»' >p a point,/»' $ p\J q.

(A5) If /» V q is a line and r a point so that/», q < r, then t < r for all / E p V q-

G = (P, L, E) is then an incidence geometry on P and L.

In view of (A2), every line of G may be identified with the ideal of all points

incident with it. Furthermore, two comparable points p < q may be taken to

generate the degenerate line p\J q, which we view as the ideal {r E P: r < q}.

Thus the set of degenerate lines, ordered by containment, is isomorphic to the set

of points of G. We will make use of those identifications whenever convenient.

A linear set of G is a set S of points such that for every p, q E S,p V q C S. So

each (possibly degenerate) line is a linear set and P itself is linear. The intersection

A S, of linear sets 5, is linear. Defining the join V^, as the smallest linear set

containing all S¡, we see that the collection M(G) of linear sets of G forms a

complete lattice. Moreover, calling an element p ¥= 0 of a lattice M completely

join-irreducible if /» = V T implies/» = t for some t E T, for all T c M, we note

Proposition 3.1. Let G = (P, L, E) be an incidence geometry. Then P is isomor-

phic to the set of completely join-irreducible elements of M(G).

Proof. Since every linear set of G is a union of degenerate hnes, a completely

join-irreducible element of M(G) must be a degenerate line.

Conversely, if p is a point of G, let (p) = \J {r\J q: r, q <p}. By axiom (A5),

(p) is a linear set. Moreover, (p) is the join of all linear sets properly contained in

/» V P- By axiom (A4), p £ (p). Hence the degenerate line /» V p must be com-

pletely join-irreducible.    □

Note that a line of an incidence geometry is not necessarily generated by just any

two noncomparable points incident with it. We call the incidence geometry G

line-regular if G satisfies the following weak analogue of this property:

(A6) If p, q, r are pairwise noncomparable points such that r Ep\J q, then there

exists a point/»' < p so that/»' \J q= r\J q.

We now come to the central definition.

A projective geometry is a line-regular incidence geometry PG = (P, L, E)

satisfying:
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(A7) If a, p, c, q, b are points such that c E a\J p and q E b\J c, then there

exists a point x E a V b so that q E p V x.

This "triangle property" is illustrated in Figure 1:

Figure 1

In the statement of axiom (A7) we did not explicitly require the lines a\f p,

b V c» or o V b to be nondegenerate. That this is only a matter of convenience

follows from the next lemma.

Lemma 3.2. Let a, p, c, q, b be points of a (not necessarily projective) incidence

geometry such that a\yp, b\j c, or a\j b is degenerate. Then the conclusion of

axiom (A7) holds.

Proof. Suppose, for instance, a < p. Then c < p. Hence q E b V c implies

q E b\/p.

If a > p, then c < a. Hence q E a\J b.

The other cases are checked as easily.   □

Many properties of linear sets of classical projective geometries now carry over

to the general case as we will proceed to show.

Proposition 3.3. Let S and T be two linear sets of a projective geometry

PG = (P, L, E). Then

5 V T = {r E P:r E p\J q for some p, q E S U T).

Proof. It suffices to show that the set in the statement of the proposition is

linear. So let a, b, c, d, />, q, r he points of PG such that a, b E S, c, d E T,

p E a\/ c, q Eb\J d, and r E p\J q. We must show that there exist points s E S,

t E T such that r E s \J t.

Applying axiom (A7) to the points a, c, r, q, we obtain a point u E a V q so that

r E c V u. So we can apply (A7) to b, d, q, u, a and get a point s E a V b so that

u E d V s. Finally, using (A7) with the points d, s, u, r, c, we conclude the

existence of a point t E d V c such that r E s\f t (see Figure 2).   □
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Proposition 3.4. The lattice M(PG) of linear sets of a projective geometry PG is

modular.

Proof. If X, Y, Z are arbitrary linear sets such that X c Z, we must show

X \JiY f\Z)^(X\J Y)/\Z since the inequality X \J {Y A Z) c (X V Y) A
Z holds in any lattice.

X V ( Y A Z) consists of all points ofIu(/AZ) and all points incident with

some line between X and Y /\Z (Proposition 3.3).

Let/» E iX V Y) A Z. W.l.o.g., we may assumep fZu(iAZ). So/» ËxV

y for some * G X, y E Y. Since PG is line-regular, there is a point >-' < y so that

/» V x = x V.y', ie., y EYf\Z because p, x E Z. Hence/» is incident with a line

between X and Y /\ Z.    fj

Consider the statement

(A8) For every linear set S there exists a finite set B of points such that S is the

smallest linear set containing B.

Proposition 3.5. The lattice MiPG) of linear sets of the projective geometry PG is

of finite length iff (A8) holds for PG.

Proof. In a lattice of finite length an element is completely join-irreducible iff it

is join-irreducible. Hence the necessity of (A8) follows from Proposition 3.1.

To show sufficiency, we first claim that ifp = p\/p is a degenerate line of PG,

then the interval [0, p] is of finite length.

Suppose this is not the case and let p E P he a minimal (with respect to the

height in P) counterexample. Since /» is completely join-irreducible (Proposition

3.1), it has a unique lower neighbor (/>) < p in MiPG). By (A8), there are points

p, </»,/'= 1, ..., n, such that (p) = px V • • • Vp„. By the choice of p, every

interval [0, />,] is of finite length. So, in particular, every /», is of finite rank in

MiPG). Consequently, using the remark of [4, p. 27], (/») is of finite rank in

MiPG). But this means that/» is of finite rank.

The general case then follows by the same argument.   □
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A projective geometry PG with the property (A8) is finite dimensional. Proposi-

tion 3.5 allows us to assign to every linear set S of PG the (Kuros-Ore) dimension

diS), namely the dimension of S in the lattice M(PG). d(PG) = d(P) is the

dimension of PG. So the dimension of a linear set is just the minimal number of

points needed to span this linear set.

We end this section by giving two examples of projective geometries on partially

ordered sets.

Example 3.6. With a finite abelian group A a projective geometry PG(A) may be

associated in the following way. The points of PG(A) are the cyclic subgroups of A

of prime power order. The lines of PG(A) are the subgroups of A that can be

represented as direct sums of two points. The incidence structure is then given by

containment.

Example 3.7. A projective Hjelmslev plane of level n is an incidence structure

with neighborhood on unordered sets of points and hnes. It turns out, however, that

a projective Hjelmslev plane of level n corresponds in a very natural way to a

projective geometry on partially ordered sets of points and lines where no concept

of neighborhood is needed. We give more details in §6.

In both examples, the lattices of linear sets are cyclic in the sense of §5. The

partially ordered sets of points therefore exhibit a special structure: their Hasse

diagram is a disjoint union of rooted trees whose roots correspond to the minimal

points.

4. The geometry of a modular lattice. It was shown in the preceding section that

every finite-dimensional projective geometry gives rise to a modular lattice of finite

length. In this section we will associate with each modular lattice of finite length a

projective geometry in a natural way so that the lattice of linear sets thereby

obtained is isomorphic to the lattice we started out with. This means that a

modular lattice of finite length essentially is the lattice of linear sets of some

projective geometry.

So let M he a modular lattice of finite length. By PG(M) we understand the sets

P = {p E M: d(p) = 1} and L = {g G M: d(g) = 2} together with the order and

incidence relation implied by M. As before, we refer to P and L as sets of points

and lines of PG(M).

Proposition 4.1. PG(M) is an incidence geometry.

Proof. (Al), (A2), and (A5) are obvious. (A3) is just the definition of the

dimension of a line. (A4) is a direct consequence of Lemma 2.1.   □

In order to distinguish more clearly between the lattice-theoretic concepts of M

and the geometric concepts of the lattice M(PG) of linear sets of PG = PG(M), it

is convenient to introduce a new notation: for T c P, let

f=/\{SE M(PG): T c S}.

Thus T G M(PG) iff r = T iff p V q E T for allp, q E T.

Our goal is to show that PG is a projective geometry and that M(PG) is

isomorphic to M.
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Theorem 4.2. Let x,y E M, z G P be arbitrary elements so that z ¿f,y but

z < x + y. Then there exists x' < x, x' G P, with the property x' + y = z + y.

Proof. W.l.o.g., we may assume z + y = x + y (otherwise we replace x by

x(y + z)). With z = xz + yz and x = zx + yx, we compute z + (x + y) = x +

y, z + (x+y) = z+y = x+y, and (x + y)z = (xz + y)z = xz + yz = z,

(x + y)z = z. Thus [z, z] and [x + y, x + y] and, similarly, [je, x] and [x + y, x +

y] are projective. Hence [3c, x] and [z, z] are isomorphic.

If z = z, then z E P implies z = xz, i.e., z < x, and we may take x' = z.

If z < z, z has a unique lower neighbor z, z < z_< z. Let x he the unique lower

neighbor of x in [x, x]. Since every element of M is a join of members of P, there

exists x' E P such that jc' < x and x' <£ x. So jc' + 3c «£ x allows us to conclude

x' + x = x. Furthermore, z_ + y > z + y > x. Therefore z + x'+y > x' + x +

y = x + y. Finally, z_< z implies z_ + (x' + y)z = (z_ + x' + y)z = z, i.e., z < x'

+ y since z E P. Hence x' + y = z + y.    □

Corollary 4.3. PG is a projective geometry.

Proof. Property (A6) is a special case of Theorem 4.2.

For (A7), let x = a + b, y = p, and z = q.    PJ

LEMMA4.4.ForX CP,ZX = ZX.

Proof. The lemma follows immediately from the observation

*=   U  {p\jq:p,qEX}.    Q

Lemma 4.5. // T is a linear set of PG andp E P is such that p < 2 T, thenp E T.

Proof. Since M is of finite length, there are elements p¡ E T, i = 1, . . . , n, such

that/» < /», + • • • +p„. We use induction on n.

The case n < 2 follows directly from the definition.

Let T = (p„ . . . ,p„}. By Lemma 4.4, p < 2 T + pn. Hence, by Theorem 4.2,

there is q E P, q < 2 T', with p < q + /»„. By the induction hypothesis, q E T',

i.e.,p E {T',Pn} ET.    a

Lemmas 4.4 and 4.5 together yield as a consequence that the map T —> 2 T is an

isomorphism from M(PG) onto M. We can therefore summarize:

Theorem 4.6. Every modular lattice M of finite length is isomorphic with the lattice

M(PG) of linear sets of the projective geometry PG(M) naturally associated with M.

a
Corollary 4.7 (Kurinnoi [14]). Let M and M' be modular lattices of finite

length. Then M and M' are isomorphic iff their partially ordered sets of elements that

are joins of at most two join-irreducible elements are isomorphic.    □

Another immediate consequence is the "Verbindungssatz":

Corollary 4.8. Let M be a modular lattice of finite length andp < a + b in M,p

join-irreducible. Then there are join-irreducible elements a' < a and b' < b in M

such that p < a' + b'.   TJ
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The application is a test for lattice identities which is well known in the case of

complemented modular lattices.

Corollary 4.9. Let w and w' be lattice words such that in w no variable appears

more than once. Then the inequality w < w' is valid in a given modular lattice M of

finite length provided it is valid for every substitution of join-irreducibles for the

variables.   □

Examples of such inequalities are the Arguesian law of Jónsson and Monk [10],

the dual «-distributive inequality of A. Huhn (related to dimension), and the Fano

inequality of Wille [21]. Inequalities of this type expressing other characteristics of

coordinatizing rings can also be constructed.

The infinite case. In the derivation of the results of §3 no use was made of any

finiteness condition imposed on the projective geometry PG except in the proof of

Theorem 3.5. Dropping the assumption that the set P of points of PG he of finite

length and not requiring property (A8) to hold for PG, one may therefore ask

whether a general analogue of Theorem 4.6 can be obtained. It turns out that a

general projective geometry will have a modular lattice of linear sets which is

algebraic such that every element is the join of compact irreducible elements. In

this context, the analogue of Theorem 4.6 holds. This may be proved exactly along

the lines of the proofs given so far.

For another approach to a theory of an infinite analogue of projetive geometries

of finite dimension see §7.

5. Primary geometries. So far we have outlined a theory of projective incidence

geometry that encompasses the theory of modular lattices (of finite length). At this

level of generality one cannot expect too many features of classical projective

geometry to reveal themselves. We will therefore first characterize the projective

geometries whose dimension function is monotone in the sense that S E T implies

d(S) < d(T) for any two linear sets S and T. We will then exhibit the projective

geometries that have the additional property that every line of any minor is

incident with at least three minimal points (by a minor of a projective geometry PG

we understand the projective geometry associated with an interval of M(PG)).

Those are the primary geometries. Primary geometries admit a theory of coordina-

tiza tion similar to the classical theory: the role of the coordinatizing field is taken

over by a completely primary uniserial ring (see, e.g., Jónsson and Monk [10] for

details).

We will throughout assume all projective geometries to be finite dimensional and

all lattices to be of finite length.

A cycle of a lattice M is a nonzero element z E M such that [0, z] is a chain. M

is cyclic if every element of M is a join of cycles, i.e., M is cyclic precisely when the

set of join-irreducible elements is the set of cycles.

Theorem 5.1. Let M be a modular lattice. Then M is cyclic iff for every x, y E M,

x < y implies d(x) < d(y).



328 ULRICH FAIGLE AND CHRISTIAN HERRMANN

Proof. Assume that M is not cyclic. Then there is an element p E P, the set of

points of PG(M), which is not a cycle. Hence [0, p] contains at least two noncom-

parable elements q, r E P. So we have q + r < p and d(q + r) > d(p).

Conversely, assume that M is cyclic.

Note first that for every p G P, a E M, p ^ a implies that a + p is join-irreduc-

ible in [a, 1]. This follows from the isomorphism of [pa,p] and [a, p + a]. Conse-

quently, if [a, b] is any interval of M and x E [a, b], the dimension of x with

respect to [a, b] does not exceed d(x).

Suppose that the theorem fails to hold. Then we choose x, y E M, y of minimal

rank such that x < y and n = d(x) > d(y) = m. So we may write y = p + u for

suitable p E P, u G M with d(u) = m — 1. Similarly, x = xx + • • • +xn for

suitable elements x¡ E P.

By Theorem 4.2, there are elements p¡, 0 < p, < p, such that x¡ + u = p¡ + u,

i = 1, . . ., n. Moreover, since p is a cycle, all p,'s are comparable. So, w.l.o.g.,

/»„ + u = p, + • • • +pn + u = xx + ■ ■ • + xn + u = x + u.

Hence x E [xn,pn + u], and the dimension of x with respect to [xn,pn + u] must

be equal to n — 1. Since [xn,pn + u] and [x„pn, u] are isomorphic, [0, u] must

contain an element of dimension at least n — 1 by the remark above, a contradic-

tion to d(u) «■-m — 1 < n — 1 and the choice of y.   fj

A cyclic modular lattice M is k-primary (2 < k < oo) if every interval of M

which is not a chain has at least k atoms. The next proposition says that

&-primarily really is a property of the hnes of the projective geometry PG(M).

Proposition 5.2. A cyclic modular lattice M is k-primary iff for all p, q E P,

[0,p + q] is k-primary.

Proof. Let [x, y] be an interval of M which is not a chain. Then we may choose

a, b E M such that ab is of minimal rank with the property x < ab < a, b <. a +

b < y.

Let a', b' E P be such that a = a' + ab and b = b' + ab. We may assume

a = a' + x and b = b' + x since ab was chosen minimal. Thus a + b = x + a' +

b'. Hence [x, a + b] and [x(a' + b'), a' + b'] are isomorphic.

Consequently the interval [x, a + b] and, a fortiori, [x,y] must contain at least k

atoms.    □

A note on the terminology: 2-primary lattices are also called semiprimary

whereas 3-primary lattices are simply termed primary (cf. [10]).

We will take a closer look at semiprimary lattices. By Proposition 5.2, it suffices

to restrict our attention to the case of dimension 2.

Proposition 5.3. Let M be a semiprimary lattice, d(M) = 2. Then if z E P is a

maximal cycle of M, [z, 1] is a chain.

Proof. If not, there are atoms g =£ m E [z, 1] such that z ■< g, m -< g + m.

Choose a, b E P so that g — z + a and m = z + b.

Since M is semiprimary, there is an atom c E P with c ^ z. Hence we may

assume g = z + c.
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Now z < c + b is impossible because b < m and r(c + b) < r(b) + 1. Also,

c < z + b and b < z + c are impossible since g and m are noncomparable.

Hence d(z + b + c) = 3, contradicting í/(M) = 2.    fj

Proposition 5.4. Lei M be a cyclic modular lattice such that for all noncomparable

cycles p,q E P, [0, p + q] contains at least 2 atoms and [z,p + q] is a chain

whenever z is a maximal cycle in [0, p + q\. Then M is semiprimary.

Proof. If not, there is an interval [x, y] in M which is not semiprimary. Choose y

of minimal rank with this property. By Proposition 5.2, d(y) = 2.

By the hypothesis on M, x cannot be a maximal cycle in [0, y].

If x is a cycle, there is a cycle x' > x. Moreover, there is an atom c G [0, y] with

c 4 x. Hence c + x > x and x' ^ c + x. So [x,y] contains two atoms.

If x is not a cycle, then x = p + q for some noncomparable cycles p, q E P.

Neither p nor q can be a maximal cycle since otherwise [x, y] is a chain according

to the hypothesis on M.

Letp', q' he cycles such thatp' >/» and 9' > q. Thenp' ^p + q' and q' ^p' +

# by Lemma 2.1. Hence/»' + 9 ¥=p + q' and x ~< p + q',p' + q implies that [x,y]

contains at least two atoms,    fj

We define a finite-dimensional projective geometry PG = (P, L, G) to be semi-

primary if every degenerate line of PG is a chain and PG satisfies the following

axiom:

(SP) Every line is incident with at least two minimal points. Moreover, if g, m, h

are lines such that g, m < h and both g and m are incident with a maximal point of

h, then g < m or m < g.

From Propositions 5.3 and 5.4 we then obtain

Theorem 5.5. A projective geometry is semiprimary iff its lattice of linear sets is

semiprimary.    fj

The semiprimary geometry PG = (P, L, G) is called primary if:

(P) For every two noncomparable points p and q, there exists a point r such that

p\/ q = p\y r = r\/ q.

Theorem 5.6. A projective geometry PG is primary iff its lattice M(PG) of linear

sets is primary.

Proof. It suffices to verify the theorem for projective geometries PG with

dimension d(PG) = 2. So assume that PG is primary but M(PG) is not primary.

Then there are x,y G M(PG) such that [x, y] contains exactly two atoms a and b.

By induction on the rank of M(PG), we may assume a + b = y = 1. Also, there

are a', b' E P such that a = x + a' and b = x + b'.

If a' + b' <y, consider [x,x + a! 4- b'\ and [x(a' + />'), a' + b'], the isomorphic

intervals, and conclude that [x, x + a! + b'] must contain at least three atoms, a

contradiction.

If a' + b' = .y, choose r E P such that a' + b' = a! + r = b' + r. Since r is a

cycle, [x, x + r] must be a cycle because [rx, r] and [x, x + r] are isomorphic.
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x + r < a, b is impossible since r + a = r+b=y.

Thus x + r must be a third atom of [x, a + b].

Conversely, we must show that for all noncomparable cycles a, b of a primary

lattice M, there is a cycle r such that a + b = a + r = b + r.

Note first that an element z E [x, y] which is join-irreducible in the interval

[x, y] must be of the form z = x + p for some join-irreducible element p of M.

This may be seen from the representation z = x + z = x + (px + ••• +pn) = (x

+ px) + ■ ■ ■ +(x + p„).

We now proceed by induction on the rank.

If a and b are atoms of M, the existence of r is a direct consequence of the

definition of a primary lattice.

For the induction step, assume that a is not an atom and let a' he a cycle strictly

below a. Then a' + b is a cycle in [a', a + b]. Moreover, a ^ a' + b (Lemma 2.1)

and a' + b 4j, a. Because r([a', a + b]) < r([0, a + b]), we conclude therefore the

existence of a cycle r of M such that a + b = a + (a' + b) = a + (a' + r) = a +

r = a' + b + r.By Lemma 2.1, we must have a < b + r, i.e., a + r = b + r.   □

Jónsson and Monk [10] have shown that every primary lattice M which is not a

chain is simple. Furthermore, if d(M) > 3, any two intervals of length 2 that are

not chains are isomorphic [10, Theorem 6.3]. Consequently, calling a primary

geometry k-primary if every line is incident with at least k minimal points, we may

state:

Theorem 5.7. A primary geometry PG of dimension d(PG) > 3 is k-primary iff

M(PG) is a k-primary lattice.    □

6. Example: Projective Hjelmslev planes of level n. It is well known that every

element of a semiprimary lattice M may be written as a sum of independent cycles

(see, e.g., [10]), where the cycles px, . . . ,pn of M are said to be independent if

r(p, + • • • +p„) = r(p,) + • • ■ + r(p„). If the element 1 G M can be written as

sum of independent cycles all having the same rank n, M is n-homogeneous. It

follows from [10, Theorem 5.3] that all maximal cycles of an «-homogeneous

semiprimary lattice have the same rank.

«-homogeneous primary lattices M of dimension diM) = 3 have been looked at

from an incidence-geometric point of view by Artmann [1], who suggested Hjelm-

slev spaces as defined by Klingenberg [12], [13] and Lück [15] as the appropriate

analogue of classical projective spaces. In particular, he showed that with each

«-homogeneous primary lattice M, diM) = 3, a projective Hjelmslev plane HiM)

of level « («-//-plane) may be associated in the following way:

The points of HiM) are the maximal cycles of M and the lines of HiM) the joins

of two independent points. The incidence relation of HiM) is the incidence

relation implied by M.

Dugas [6] then proved the converse: any «-//-plane H is isomorphic to the

associated «-//-plane HiM) of some (up to isomorphism) unique «-homogeneous

primary lattice M with diM) = 3.

In our terminology, a «-//-plane therefore essentially is a primary geometry of

dimension three where all maximal points share the same rank.
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We believe that this approach to projective Hjelmslev planes of level « offers

some advantage. We do not need any concept of "neighborhood" among points.

Moreover, in the arguesian case, our linear sets correspond to all submodules of

some module R3 over a completely primary and uniserial ring R, which seems to

be more natural than the consideration of only the direct factors of R 3.

7. Point-hyperplane incidence. Classical projective spaces can be characterized by

a set of self-dual axioms involving just the incidence relation between points and

hyperplanes (see, e.g., Esser [7], Dembowsky and Wagner [5], Kantor [11], and

Markowsky and Petrich [16]).

In this section we offer such a set of axioms for projective geometries on partially

ordered sets. A hyperplane in this context will, of course, mean the dual of a point,

namely a linear set which is meet-irreducible in the lattice of linear sets.

Let P and H he distinct partially ordered sets and / c P x H an incidence

relation such that

(S,) For all/» <qEP,hEH,qIh impliesp / «.

(S',) For all g < « G H,p E P,p I g impliesp / «.

To avoid trivialities, we will assume that none of the following sets is empty:

forp EP,p' = {« G H: pi h} and, dually,

for« G H, h" = {p E P:p I h}.

A subset S c P(//) is closed if S is an intersection of sets of the form «"(p').

Thus we obtain the (complete) lattice A/(P) (Af(//)) of closed subsets of P (//).

From the theory of Galois connections (see, e.g., Ore [18]) one easily deduces

that A/(P) and A/(//) are dually isomorphic via the Galois connection:

for S E P, S h> {« G H: s I h for all s E S} and

for T c H, T h> {p G P: p 11 for ail t E T}.

We next assume that the incidence structure (P, H, I) satisfies, in addition:

(S2) For ail h, «„ «2 G H, h" = «¡' n «2 implies « = «, or « = h2. Furthermore

h" ¥> P for ail h G H.

(52) For ail p,px,p2 E P, p' = p\ n p2 implies p = px or p = p2. Furthermore

p'^//forallp G P.

Proposition 7.1. // A/(P) is of finite length, then P (//) is isomorphic to the

partially ordered set of join- imeet-) irreducible elements of M(P).

Proof. Follows immediately from the fact that M(P) and M(//) are dually

isomorphic.    □

Consider now the conditions:

(53) For any hx ¥= h2 E H, q,p E P such thatp G h'[,p E «¡' for allp <p, and

q E h'{ - h2, there exists « G H such that q G «" and («¡' n h2) u p C «".

(S3) For any p, ¥=p2 G P, g, h E H such that g G p\, g G p\ for all g > g, and

« G pj — p'2, there exists p E P such that g G p' and (p', n p'-f) U h E p'.

Theorem 7.2. Let Af(P) be affinité length. Then A/(P) is modular iffiS3) and (S3)

hold.
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Proof. By [8, Theorem 5], M(P) is (upper) semimodular iff (S3) holds. By

duality, A/(//) is (upper) semimodular iff (S3) holds. Since M(P) is modular iff

both A/(P) and its dual are (upper) semimodular, the theorem follows.    □

Corollary 7.3. (P, //, /) is isomorphic to the incidence structure of points and

hyperplanes of a finite-dimensional projective geometry PG iff (P, H, I) satisfies the

properties (S,)-(S3) and MiP) (M(//)) is of finite length.    □

We remark that, without any finiteness condition, in analogy with [16], the triple

(P, H, I) might be termed a subprojective space if (S,)-(S3) and (Si)-(S3) hold.

However, we will not go into details.
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