Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The topology on the primitive ideal space of transformation group $ C\sp{\ast} $-algebras and C.C.R. transformation group $ C\sp{\ast} $-algebras


Author: Dana P. Williams
Journal: Trans. Amer. Math. Soc. 266 (1981), 335-359
MSC: Primary 46L05; Secondary 22D25, 54H15
DOI: https://doi.org/10.1090/S0002-9947-1981-0617538-7
MathSciNet review: 617538
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ (G,\Omega )$ is a second countable transformation group and the stability groups are amenable then $ {C^ \ast }(G,\Omega )$ is C.C.R. if and only if the orbits are closed and the stability groups are C.C.R. In addition, partial results relating closed orbits to C.C.R. algebras are obtained in the nonseparable case.

In several cases, the topology of the primitive ideal space is calculated explicitly. In particular, if the stability groups are all contained in a fixed abelian subgroup $ H$, then the topology is computed in terms of $ H$ and the orbit structure, provided $ {C^ \ast }(G,\Omega )$ and $ {C^ \ast }(H,\Omega )$ are $ EH$-regular. These conditions are automatically met if $ G$ is abelian and $ (G,\Omega )$ is second countable.


References [Enhancements On Off] (What's this?)

  • [1] L. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc. 130 (1968), 175-215. MR 0409720 (53:13472)
  • [2] R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-97. MR 0125456 (23:A2757)
  • [3] N. Bourbaki, Intégration, Chapitre 7, Actualités. Sci. Indust. No. 1306, Hermann, Paris, 1963.
  • [4] R. C. Busby, Double centralizers and extensions of $ {C^ \ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99. MR 0225175 (37:770)
  • [5] R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 147 (1970), 503-537. MR 0264418 (41:9013)
  • [6] J. Diximier, Les $ {C^\ast}$-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1969. MR 0246136 (39:7442)
  • [7] S. Doplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1-28. MR 0205095 (34:4930)
  • [8] E. Effros, Transformation groups and $ {C^\ast}$-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 0174987 (30:5175)
  • [9] E. Effros and F. Hahn, Locally compact transformation groups and $ {C^\ast}$-algebras, Mem. Amer. Math. Soc. no. 75 (1967). MR 0227310 (37:2895)
  • [10] D. Evans and H. Takai, Simplicity of crossed products of GCR algebras by abelian groups, Math. Ann. 243 (1979), 55-62. MR 543094 (80m:46059)
  • [11] J. M. G. Fell, A Hausdorff topology on the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962). MR 0139135 (25:2573)
  • [12] -, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268. MR 0150241 (27:242)
  • [13] J. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124-128. MR 0136681 (25:146)
  • [14] -, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR 0146297 (26:3819)
  • [15] E. C. Gootman, The type of some $ {C^\ast}$ and $ {W^\ast}$-algebras associated with transformation groups, Pacific J. Math. 48 1 (1973), 98-106. MR 0335681 (49:461)
  • [16] -, Primitive ideals of $ {C^\ast}$-algebras associated with transformation groups, Trans. Amer. Soc. 170 (1972), 97-108. MR 0302818 (46:1961)
  • [17] E. C. Gootman and J. Rosenburg, The structure of crossed product $ {C^\ast}$-algebras: a proof of the Effros Hahn conjecture, Invent. Math. 52 (1979), 283-298. MR 537063 (80h:46091)
  • [18] P. Green, $ {C^\ast}$-algebras of transformation groups with smooth orbit space, Pacific J. Math. 72 (1977), 71-97. MR 0453917 (56:12170)
  • [19] -, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250. MR 0493349 (58:12376)
  • [20] F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295-315. MR 0246999 (40:268)
  • [21] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
  • [22] G. Mackey, Imprimitivity for representations of locally compact groups, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545. MR 0031489 (11:158b)
  • [23] M. A. Rieffel, Induced representations of $ {C^\ast}$-algebras, Advances in Math. 13 (1974), 176-257. MR 0353003 (50:5489)
  • [24] -, Strong Morita equivalence of certain transformation group $ {C^\ast}$-algebras, Math. Ann. 222 (1976), 7-22. MR 0419677 (54:7695)
  • [25] -, Unitary representations of group extensions: an algebraic approach to the theory of Mackey and Blattner, Studies in Analysis, Adv. in Math. Suppl. Ser. 4 (1979), 43-82. MR 546802 (81h:22004)
  • [26] -, On the uniqueness of the Heisenberg commutation relations, Duke Math. J. 39 (1972), 745-752. MR 0412340 (54:466)
  • [27] J.-L. Sauvageot, Idéaux primitifs de certain produits croisé, Math. Ann. 231 (1977), 61-76. MR 473355 (80d:46112)
  • [28] I. Schochetman, Compact and Hilbert-Schmidt induced representations, Duke Math. J. 41 (1974), 89. MR 0333067 (48:11392)
  • [29] M. Takesaki, Covariant representations of $ {C^\ast}$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303. MR 0225179 (37:774)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05, 22D25, 54H15

Retrieve articles in all journals with MSC: 46L05, 22D25, 54H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0617538-7
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society