Nonweakly compact operators from order-Cauchy complete lattices, with application to Baire classes

Author:
Frederick K. Dashiell

Journal:
Trans. Amer. Math. Soc. **266** (1981), 397-413

MSC:
Primary 47B55; Secondary 26A21, 28A60, 46E05

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617541-7

MathSciNet review:
617541

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the connection between weak compactness properties in the duals of certain Banach spaces of type and order properties in the vector lattice . The weak compactness property of principal interest here is the condition that every nonweakly compact operator from into a Banach space must restrict to an isomorphism on some copy of in . (This implies Grothendieck's property that every -convergent sequence in is weakly convergent.) The related vector lattice property studied here is *order-Cauchy completeness*, a weak type of completeness property weaker than -completeness and weaker than the interposition property of Seever. An apphcation of our results is a proof that all Baire classes (of fixed order) of bounded functions generated by a vector lattice of functions are Banach spaces satisfying Grothendieck's property. Another application extends previous results on weak convergence of sequences of finitely additive measures defined on certain fields of sets.

**[1]**N. Aronszajn and P. Panitchpakdi,*Extension of uniformly continuous transformations and hyperconvex metric spaces*, Pacific J. Math.**6**(1956), 405–439. MR**0084762****[2]**F. K. Dashiell Jr.,*Isomorphism problems for the Baire classes*, Pacific J. Math.**52**(1974), 29–43. MR**0355563****[3]**-,*Weakly unconditionally summable sequences of continuous functions*(preprint).**[4]**F. Dashiell, A. Hager, and M. Henriksen,*Order-Cauchy completions of rings and vector lattices of continuous functions*, Canad. J. Math.**32**(1980), no. 3, 657–685. MR**586984**, https://doi.org/10.4153/CJM-1980-052-0**[5]**D. H. Fremlin,*Topological Riesz spaces and measure theory*, Cambridge University Press, London-New York, 1974. MR**0454575****[6]**Zdeněk Frolík,*Three uniformities associated with uniformly continuous functions*, Symposia Mathematica, Vol. XVII (Convegno sugli Anelli di Funzioni Continue, INDAM, Rome, 1973) Academic Press, London, 1976, pp. 69–80. MR**0478110****[7]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[8]**A. Grothendieck,*Topological vector spaces*, Gordon and Breach Science Publishers, New York-London-Paris, 1973. Translated from the French by Orlando Chaljub; Notes on Mathematics and its Applications. MR**0372565****[9]**Anthony W. Hager,*Real-valued functions on Alexandroff (zero-set) spaces*, Comment. Math. Univ. Carolinae**16**(1975), no. 4, 755–769. MR**0394547****[10]**H. Hahn,*Reelle Funktionen*, Chelsea, New York, 1948.**[11]**Felix Hausdorff,*Set theory*, Second edition. Translated from the German by John R. Aumann et al, Chelsea Publishing Co., New York, 1962. MR**0141601****[12]**M. Henriksen and D. G. Johnson,*On the structure of a class of archimedean lattice-ordered algebras.*, Fund. Math.**50**(1961/1962), 73–94. MR**0133698**, https://doi.org/10.4064/fm-50-1-73-94**[13]**K. Kuratowski and M. Mostowski,*Set theory*, 2nd ed., North-Holland, Amsterdam, New York and Oxford, 1976.**[14]**R. Daniel Mauldin,*Baire functions, Borel sets, and ordinary function systems*, Advances in Math.**12**(1974), 418–450. MR**0367911**, https://doi.org/10.1016/S0001-8708(74)80011-3**[15]**Haskell P. Rosenthal,*On relatively disjoint families of measures, with some applications to Banach space theory*, Studia Math.**37**(1970), 13–36. MR**0270122**, https://doi.org/10.4064/sm-37-1-13-36**[16]**H. L. Royden,*Real analysis*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR**0151555****[17]**Helmut H. Schaefer,*Banach lattices and positive operators*, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR**0423039****[18]**G. L. Seever,*Measures on 𝐹-spaces*, Trans. Amer. Math. Soc.**133**(1968), 267–280. MR**0226386**, https://doi.org/10.1090/S0002-9947-1968-0226386-5**[19]**Z. Semadeni,*Banach spaces of continuous functions*, PWN, Warsaw, 1971.**[20]**A. I. Veksler and V. A. Geĭler,*Order completeness and disjoint completeness of linear partially ordered spaces*, Sibirsk. Mat. Ž.**13**(1972), 43–51 (Russian). MR**0296654****[21]**C. J. Everett,*Sequence completion of lattice moduls*, Duke Math. J.**11**(1944), 109–119. MR**0009592****[22]**Fredos Papangelou,*Order convergence and topological completion of commutative lattice-groups*, Math. Ann.**155**(1964), 81–107. MR**0174498**, https://doi.org/10.1007/BF01344076**[23]**J. Quinn,*Intermediate Riesz spaces*, Pacific J. Math.**56**(1975), no. 1, 225–263. MR**0380355****[24]**A. I. Veksler,*A class of sequentially order-continuous functionals and a class of regular Borel measures*, Sibirsk. Mat. Ž.**17**(1976), no. 4, 757–767 (Russian). MR**0423041**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47B55,
26A21,
28A60,
46E05

Retrieve articles in all journals with MSC: 47B55, 26A21, 28A60, 46E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617541-7

Article copyright:
© Copyright 1981
American Mathematical Society