Nonweakly compact operators from order-Cauchy complete lattices, with application to Baire classes

Author:
Frederick K. Dashiell

Journal:
Trans. Amer. Math. Soc. **266** (1981), 397-413

MSC:
Primary 47B55; Secondary 26A21, 28A60, 46E05

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617541-7

MathSciNet review:
617541

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the connection between weak compactness properties in the duals of certain Banach spaces of type and order properties in the vector lattice . The weak compactness property of principal interest here is the condition that every nonweakly compact operator from into a Banach space must restrict to an isomorphism on some copy of in . (This implies Grothendieck's property that every -convergent sequence in is weakly convergent.) The related vector lattice property studied here is *order-Cauchy completeness*, a weak type of completeness property weaker than -completeness and weaker than the interposition property of Seever. An apphcation of our results is a proof that all Baire classes (of fixed order) of bounded functions generated by a vector lattice of functions are Banach spaces satisfying Grothendieck's property. Another application extends previous results on weak convergence of sequences of finitely additive measures defined on certain fields of sets.

**[1]**N. Aronszajn and P. Panitchpakdi,*Extensions of uniformly continuous transformations and hyperconvex metric spaces*, Pacific J. Math.**6**(1956), 405-439. MR**0084762 (18:917c)****[2]**F. Dashiell,*Isomorphism problems for the Baire classes*, Pacific J. Math.**52**(1974), 29-43. MR**0355563 (50:8037)****[3]**-,*Weakly unconditionally summable sequences of continuous functions*(preprint).**[4]**F. Dashiell, A. Hager and M. Henriksen,*Order-Cauchy completions of rings and vector lattices of continuous functions*, Canad. J. Math.**32**(1980), 657-685. MR**586984 (81k:46020)****[5]**D. H. Fremlin,*Topological Riesz spaces and measure theory*, Cambridge Univ. Press, Cambridge, 1974. MR**0454575 (56:12824)****[6]**Z. Frolik,*Three uniformities associated with uniformly continuous functions*, Proc. Rome Conf. on Rings of Continuous Functions, 1973, Symposia Mathematica, vol. 17, Academic Press, New York, 1976, pp. 69-80. MR**0478110 (57:17599)****[7]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand Reinhold, Princeton, N. J., 1960. MR**0116199 (22:6994)****[8]**A. Grothendieck,*Topological vector spaces*, translated by O. Chaljub, Gordon and Breach, New York, 1973. MR**0372565 (51:8772)****[9]**A. W. Hager,*Real-valued functions on Alexandroff (zero-set) spaces*, Comment. Math. Univ. Carolinae**16**(1975), 755-769. MR**0394547 (52:15348)****[10]**H. Hahn,*Reelle Funktionen*, Chelsea, New York, 1948.**[11]**F. Hausdorff,*Set theory*, 2nd ed., Chelsea, New York, 1962. MR**0141601 (25:4999)****[12]**M. Henriksen and D. Johnson,*On the structure of a class of Archimedean lattice-ordered algebras*, Fund. Math.**50**(1961), 73-94. MR**0133698 (24:A3524)****[13]**K. Kuratowski and M. Mostowski,*Set theory*, 2nd ed., North-Holland, Amsterdam, New York and Oxford, 1976.**[14]**R. D. Mauldin,*Baire functions, Borel sets, and ordinary function system*, Advances in Math.**12**(1974), 418-450. MR**0367911 (51:4153)****[15]**H. P. Rosenthal,*On relatively disjoint families of measures, with some applications to Banach space theory*, Studia Math.**37**(1970), 13-36; correction, 311-313. MR**0270122 (42:5015)****[16]**H. L. Royden,*Real analysis*, 2nd ed., Macmillan, New York, 1968. MR**0151555 (27:1540)****[17]**H. H. Schaefer,*Banach lattices and positive operators*, Springer-Verlag, New York, 1974. MR**0423039 (54:11023)****[18]**G. Seever,*Measures on**spaces*, Trans. Amer. Math. Soc.**133**(1968), 267-280. MR**0226386 (37:1976)****[19]**Z. Semadeni,*Banach spaces of continuous functions*, PWN, Warsaw, 1971.**[20]**A. I. Veksler and V. A. Geiler,*Order and disjoint completeness of linear partially ordered spaces*, Sibirsk. Mat. Z.**13**(1972), 43-51 = Siberian Math. J.**13**(1972), 30-35. MR**0296654 (45:5713)****[21]**C. J. Everett,*Sequence completion of lattice moduls*, Duke Math. J.**11**(1944), 109-119. MR**0009592 (5:169i)****[22]**F. Papangelou,*Order convergence and topological completion of commutative lattice-groups*, Math. Ann.**155**(1964), 81-107. MR**0174498 (30:4699)****[23]**J. Quinn,*Intermediate Riesz spaces*, Pacific J. Math.**56**(1975), 225-263. MR**0380355 (52:1255)****[24]**A. I. Veksler,*On one class of ordered sequentially continuous functions and regular Borel measures*, Siberian Math. J.**17**(1976), 572-580. MR**0423041 (54:11025)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47B55,
26A21,
28A60,
46E05

Retrieve articles in all journals with MSC: 47B55, 26A21, 28A60, 46E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617541-7

Article copyright:
© Copyright 1981
American Mathematical Society