Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalizations of Cesàro continuous functions and integrals of Perron type


Author: Cheng Ming Lee
Journal: Trans. Amer. Math. Soc. 266 (1981), 461-481
MSC: Primary 26A39; Secondary 26A21, 26A24
DOI: https://doi.org/10.1090/S0002-9947-1981-0617545-4
MathSciNet review: 617545
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The linear space of all the Cesàro continuous functions of any order is extended by introducing pointwisely Cesàro continuous functions and exact generalized Peano derivatives. Then six generalized integrals of Perron type are defined and studied. They are based on three recent monotonicity theorems and each depends on an abstract upper semilinear space of certain functions. Some of the integrals are more general than all the integrals in the Cesàro-Perron scale provided that the abstract semilinear space is taken to be the linear space of all the pointwisely Cesàro continuous functions or all the exact generalized Peano derivatives. That such a concrete general integral is possible follows from the fact proved here that each exact generalized Peano derivative is in Baire class one and has the Darboux property. Relations between the pointwisely Cesàro continuous functions or the exact generalized Peano derivatives and functions defined by means of the values of certain Schwartz's distributions at "points" are also established.


References [Enhancements On Off] (What's this?)

  • [1] B. S. Babcock, On properties of approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294. MR 0414803 (54:2895)
  • [2] J. A. Bergin, A new characterization of Cesàro-Perron integrals using Peano derivatives, Trans. Amer. Math. Soc. 228 (1977), 287-305. MR 0435312 (55:8272)
  • [3] L. S. Bosanquet, A property of Cesàro-Perron integrals, Proc. Edinburgh Math. Soc. 6 (1940), 160-165. MR 0002909 (2:131g)
  • [4] A. M. Bruckner, An affirmative answer to a problem of Zahorski and some consequences, Michigan Math. J. 13 (1966), 15-26. MR 0188375 (32:5814)
  • [5] -, Differentiation of real functions, Springer, Berlin, 1978. MR 507448 (80h:26002)
  • [6] -, Current trends in differentiation theory, Real Analysis Exchange 5 (1979-80), 9-60. MR 557963 (81a:26005)
  • [7] P. S. Bullen, The $ {P^n}$-integral, J. Austral. Math. Soc. 14 (1972), 219-236. MR 0320244 (47:8783)
  • [8] P. S. Bullen and C. M. Lee, On the integrals of Perron type, Trans. Amer. Math. Soc. 182 (1973), 481-501. MR 0338291 (49:3057)
  • [9] P. S. Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific J. Math. 47 (1973), 43-58. MR 0327990 (48:6332)
  • [10] J. C. Burkill, The approximately continuous Perron integrals, Math. Z. 34 (1931), 270-278. MR 1545252
  • [11] -, The Cesàro-Perron integral, Proc. London Math. Soc. (2) 34 (1932), 314-322.
  • [12] -, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) 39 (1935), 541-552.
  • [13] G. E. Cross, The expression of trigonometric series in Fourier form, Canad. J. Math. 12 (1960), 694-698. MR 0117496 (22:8275)
  • [14] A. Denjoy, Sur l'intégration des coefficients différentials d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
  • [15] M. J. Evans, $ {L_p}$ derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388. MR 0293030 (45:2110)
  • [16] H. W. Ellis, Mean-continuous integrals, Canad. J. Math. 1 (1949), 113-124. MR 0028932 (10:520e)
  • [17] -, On the compatibility of the approximate Perron and the Cesàro-Perron integrals, Proc. Amer. Math. Soc. 2 (1951), 396-397. MR 0043867 (13:331h)
  • [18] -, Darboux properties and applications to non-absolutely convergent integrals, Canad. J. Math. 3 (1951), 471-484. MR 0043872 (13:332d)
  • [19] R. Henstock, The use of convergence factors in Ward integration, Proc. London Math. Soc. (3) 10 (1960), 107-121. MR 0121459 (22:12197)
  • [20] R. D. James, Generalized nth primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176. MR 0060002 (15:611b)
  • [21] R. L. Jeffrey, Non-absolutely convergent integrals, Proc. Second. Canad. Math. Congr. (Vancouver, Canada, 1949), Univ. of Toronto Press, Toronto, 1951, pp. 93-115. MR 0044614 (13:449b)
  • [22] R. L. Jeffrey and H. W. Ellis, Cesàro totalization, Trans. Roy. Soc. Canada Sect. III (3) 36 (1942), 19-44. MR 0007529 (4:154d)
  • [23] R. L. Jeffrey and D. S. Miller, Convergence factors for generalized integrals, Duke Math. J. 12 (1945), 127-142. MR 0011710 (6:204d)
  • [24] Y. Kubota, On a characterization of the $ CP$-integral, J. London Math. Soc. 43 (1968), 607-611. MR 0228648 (37:4228)
  • [25] -, The mean-continuous Perron integral, Proc. Japan Acad. 40 (1964), 171-175. MR 0165064 (29:2355)
  • [26] -, An integral of Denjoy type. I, II, III, Proc. Japan Acad. 40 (1964), 713-717; 42 (1966), 737-742; 43 (1967), 441-444. MR 0178113 (31:2371)
  • [27] C. M. Lee, On the approximate Peano derivatives, J. London Math. Soc. 12 (1976), 475-478. MR 0399378 (53:3222)
  • [28] -, An approximate extension of Cesàro-Perron integrals, Bull. Inst. Acad. Sinica 4 (1976), 73-82. MR 0412358 (54:484)
  • [29] -, An analogue of the theorem of Hake-Alexandroff-Looman, Fund. Math. 100 (1978), 69-74. MR 0486362 (58:6109)
  • [30] -, Note on the oscillatory behavior of certain derivatives, Real Analysis Exchange 4 (1979), 178-183.
  • [31] S. Łojasiewicz, Sur la valeur et la limite d'une distribution en un point, Studia Math. 16 (1957), 1-36. MR 0087905 (19:433d)
  • [32] J. Marcinkiewicz and Z. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
  • [33] J. C. McGregor, An integral of Perron type, thesis, Univ. of British Columbia, Vancouver, Canada (unpublished).
  • [34] J. Mikusinski and R. Sikorski, The elementary theory of distributions. I, Rozprawy Mat. 12 (1957), 54 pp. MR 0094702 (20:1214)
  • [35] W. H. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 0062207 (15:944d)
  • [36] R. O'Malley and C. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234 (1977), 467-481. MR 0453940 (56:12193)
  • [37] J. Ridder, Ueber die gegenseitigen Beziehungen verschieder approximativ stetiger Denjoy-Perron-Integrall, Fund. Math. 22 (1934), 136-162.
  • [38] S. Saks, Theory of integral, Monogr. Mat., no. 7, Warsaw, 1937.
  • [39] W. L. C. Sargent, A descriptive definition of Cesàro-Perron integrals, Proc. London Math. Soc. (2) 47 (1941), 212-247. MR 0005897 (3:228a)
  • [40] -, On generalized derivatives and Cesàro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365-376. MR 0041199 (12:811a)
  • [41] -, Some properties of $ {C_\lambda }$-continuous functions, J. London Math. Soc. 26 (1951), 116-121. MR 0041198 (12:810g)
  • [42] L. Schwartz, Theory of distributions, Hermann, Paris, 1950. MR 0035918 (12:31d)
  • [43] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324. MR 0285678 (44:2896)
  • [44] -, On a descriptive definition of Cesàro-Perron integrals, J. London Math. Soc. (2) 3 (1971), 326-333. MR 0286954 (44:4161)
  • [45] C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. MR 0176007 (31:283)
  • [46] -, Monotonicity, convexity and symmetric derivatives, Trans. Amer. Math. Soc. 222 (1976), 225-237. MR 0401994 (53:5817)
  • [47] Z. Zahorski, Über die Menge der Punkte in welchen die Ableitung unendlich ist, Tôhoku Math. J. 48 (1941), 321-330. MR 0027825 (10:359h)
  • [48] -, Sur la première dérivé, Trans. Amer. Math. Soc. 69 (1950), 1-54. MR 0037338 (12:247c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A39, 26A21, 26A24

Retrieve articles in all journals with MSC: 26A39, 26A21, 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0617545-4
Keywords: Cesàro-Perron integrals, Denjoy integrals, Cesàro continuous functions, exact Peano derivatives, approximate derivatives, symmetric derivatives, approximate symmetric derivatives, Baire class one, Darboux property, values of distributions of points, pointwisely Cesàro continuous functions, exact generalized Peano derivatives
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society