Liapounoff's theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures

Authors:
Thomas E. Armstrong and Karel Prikry

Journal:
Trans. Amer. Math. Soc. **266** (1981), 499-514

MSC:
Primary 28B05; Secondary 28A12, 28A60

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617547-8

Erratum:
Trans. Amer. Math. Soc. **272** (1982), 809.

MathSciNet review:
617547

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Liapounoff's theorem states that if is a measurable space and is nonatomic, bounded, and countably additive, then is compact and convex. When is replaced by a -complete Boolean algebra or an -algebra (to be defined) and is allowed to be only finitely additive, is still convex. If is any Boolean algebra supporting nontrivial, nonatomic, finitely-additive measures and is a zonoid, there exists a nonatomic measure on with range dense in . A wide variety of pathology is examined which indicates that ranges of finitely-additive, nonatomic, finite-dimensional, vector-valued measures are fairly arbitrary.

**[1]**T. E. Armstrong,*Arrow's theorem with restricted coalition algebras*, J. Math. Econom.**7**(1980), 55-75. MR**568616 (81h:90010)****[2]**-,*Polyhedrality of infinite dimensional compact cubes*, Pacific J. Math.**70**(1977), 297-307. MR**0493252 (58:12281)****[3]**T. E. Armstrong and K. Prikry,*Residual measures*, Illinois J. Math.**22**(1978), 64-78. MR**0460581 (57:574)****[4]**E. D. Bolker,*A class of convex bodies*, Trans. Amer. Math. Soc.**145**(1969), 323-345. MR**0256265 (41:921)****[5]**S. Cobzas,*Hahn decompositions of finitely additive measures*, Arch. Math. (Basel)**27**(1976), 620-621. MR**0425054 (54:13012)****[6]**W. Comfort and S. Negrepontis,*The theory of ultrafilters*, Springer, New York, 1974. MR**0396267 (53:135)****[7]**J. Diestel and J. J. Uhl, Jr.,*Vector measures*, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977. MR**0453964 (56:12216)****[8]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand, Princeton, N. J., 1960. MR**0116199 (22:6994)****[9]**E. E. Granirer,*On the range of an invariant mean*, Trans. Amer. Math. Soc.**125**(1966), 384-394. MR**0204551 (34:4390)****[10]**P. R. Halmos,*The range of a vector measure*, Bull. Amer. Math. Soc.**54**(1948), 416-421. MR**0024963 (9:574h)****[11]**A. Liapounoff,*Sur les fonctions-vecteurs completement additives*, Izv. Akad. Nauk SSSR**4**(1940), 465-478. MR**0004080 (2:315e)****[12]**-,*Sur les fonctions-vecteurs completement additives*, Izv. Akad. Nauk SSSR**10**(1946), 277-279. MR**0017461 (8:157b)****[13]**J. Lindenstrauss,*A short proof of Liapounoff's convexity theorem*, J. Math. Mech.**15**(1966), 971-972. MR**0207941 (34:7754)****[14]**D. Maharam,*Finitely additive measures on the integers*, Sankhyā Ser. A**38**(1976), 44-49. MR**0473132 (57:12810)****[15]**D. Margolies,*A study of finitely additive measures as regards amenable groups, Liapounov's theorem, and the elimination of infinite integrals via non-standard real numbers*, Dissertation, Univ. of California, Berkeley, Calif., 1978.**[16]**K. P. S. Bhaskara Rao and M. Bhaskara Rao,*Existence of non-atomic charges*, J. Austral. Math. Soc. A**25**(1978), 1-6. MR**0480934 (58:1081)****[17]**L. J. Savage,*The foundations of statistics*, Dover, New York, 1972. MR**0348870 (50:1364)****[18]**G. L. Seever,*Measures on**-spaces*, Trans. Amer. Math. Soc.**133**(1968), 267-280. MR**0226386 (37:1976)****[19]**Z. Semandeni,*Banach spaces of continuous functions*. I, PWN, Warsaw, 1971.**[20]**A. Sobczyk and P. C. Hammer,*A decomposition of additive set functions*, Duke Math. J.**11**(1944), 839-846. MR**0011164 (6:129d)****[21]**-,*The ranges of additive set functions*, Duke Math. J.**11**(1944), 847-851. MR**0011165 (6:129e)****[22]**E. K. van Douwen and J. van Mill,*Subspaces of basically disconnected spaces or quotients of countably complete Boolean algebras*, Trans. Amer. Math. Soc.**259**(1980), 121-127. MR**561827 (81b:54038)****[23]**E. A. Weiss,*Finitely additive exchange economies*, J. Math. Econom. (to appear). MR**631006 (83a:90038)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28B05,
28A12,
28A60

Retrieve articles in all journals with MSC: 28B05, 28A12, 28A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617547-8

Keywords:
Liapounoff's theorem,
finite additivity,
-space,
-algebra,
real-valued measurable cardinal,
uniform measure,
Hahn decomposition,
zonoid

Article copyright:
© Copyright 1981
American Mathematical Society