Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integral geometric properties of capacities


Author: Pertti Mattila
Journal: Trans. Amer. Math. Soc. 266 (1981), 539-554
MSC: Primary 31B15; Secondary 28A75, 31C15
DOI: https://doi.org/10.1090/S0002-9947-1981-0617550-8
MathSciNet review: 617550
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ m$ and $ n$ be positive integers, $ 0 < m < n$, and $ {C_K}$ and $ {C_H}$ the usual potential-theoretic capacities on $ {R^n}$ corresponding to lower semicontinuous kernels $ K$ and $ H$ on $ {R^n} \times {R^n}$ with $ H(x,y) = K(x,y){\left\vert {x - y} \right\vert^{n - m}} \geqslant 1$ for $ \left\vert {x - y} \right\vert \leqslant 1$. We consider relations between the capacities $ {C_K}(E)$ and $ {C_H}(E \cap A)$ when $ E \subset {R^n}$ and $ A$ varies over the $ m$-dimensional affine subspaces of $ {R^n}$. For example, we prove that if $ E$ is compact, $ {C_K}(E) \leqslant c\smallint {C_H}(E \cap A)d{\lambda _{n,m}}A$ where $ {\lambda _{n,m}}$ is a rigidly invariant measure and $ c$ is a positive constant depending only on $ n$ and $ m$.


References [Enhancements On Off] (What's this?)

  • [A] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., vol. 4, no. 165, 1976. MR 0420406 (54:8420)
  • [D] C. Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff, Springer-Verlag, Berlin and New York, 1972. MR 0492152 (58:11301)
  • [F] H. Federer, Geometric measure theory, Springer-Verlag, Berlin and New York, 1969. MR 0257325 (41:1976)
  • [FB] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215. MR 0117453 (22:8232)
  • [K] R. Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153-155. MR 0248779 (40:2030)
  • [L] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin and New York, 1972. MR 0350027 (50:2520)
  • [M] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257-302. MR 0063439 (16:121g)
  • [MP] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. AI 1 (1975), 227-244. MR 0409774 (53:13526)
  • [O] M. Ohtsuka, Capacité des ensembles produits, Nagoya Math. J. 12 (1957), 95-130. MR 0105570 (21:4309)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B15, 28A75, 31C15

Retrieve articles in all journals with MSC: 31B15, 28A75, 31C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0617550-8
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society