Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Cartan structures on contact manifolds


Authors: G. Burdet and M. Perrin
Journal: Trans. Amer. Math. Soc. 266 (1981), 583-602
MSC: Primary 53C10; Secondary 53C15, 53C30
MathSciNet review: 617553
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Owing to the existence of a dilatation generator of eigenvalues $ \pm 2, \pm 1,0$ the symplectic Lie algebra is considered as a $ \vert 2\vert$-graded Lie algebra. The corresponding decomposition of the symplectic group $ {\text{Sp(2(}}n + 1{\text{),}}{\mathbf{R}}{\text{)}}$ makes the semidirect product (denoted $ {L^0}$) of the $ (2n + 1)$-dimensional Weyl group by the conformal symplectic group $ {\text{CSp(}}2n,{\mathbf{R}}{\text{)}}$ appear as a privileged subgroup and permits one to construct a $ 2n + 1$-dimensional homogeneous space possessing a natural contact form. Then $ {\text{Sp}}(2(n + 1),{\mathbf{R}})$-valued Cartan connections on a $ {L^0}$principal fibre bundle over a $ 2n + 1$-dimensional manifold $ {B_{2n + 1}}$ are constructed and called symplectic Cartan connections. The conditions for obtaining a unique symplectic Cartan connection are given. The existence of this unique Cartan connection is used to define the notion of contact structure over $ {B_{2n + 1}}$ and it is shown that any $ {L^0}$-structure of degree $ 2$ over $ {B_{2n + 1}}$ can be considered as a contact structure on it. Moreover it is shown that a contact structure can be associated in a canonical way to any contact manifold.


References [Enhancements On Off] (What's this?)

  • [1] G. Burdet and M. Perrin, Realizations of the central extension of the inhomogeneous symplectic algebra as time dependent invariance algebras of nonrelativistic quantum systems, J. Math. Phys. 16 (1975), 1692–1703. MR 0371277 (51 #7498)
  • [2] Elie Cartan, Oeuvres complètes. Partie III. Vol. 1. Divers, géométrie différentielle. Vol. 2. Géométrie différentielle (suite), Gauthier-Villars, Paris, 1955 (French). MR 0075130 (17,697u)
  • [3] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 29–55 (French). MR 0042768 (13,159e)
  • [4] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR 0355886 (50 #8360)
  • [5] -, ibid., p. 28.
  • [6] -, op. cit., p. 127.
  • [7] -, op. cit., p. 13.
  • [8] -, op. cit., p. 15.
  • [9] -, op. cit., p. 130.
  • [10] -, op. cit., p. 137.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C10, 53C15, 53C30

Retrieve articles in all journals with MSC: 53C10, 53C15, 53C30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1981-0617553-3
PII: S 0002-9947(1981)0617553-3
Article copyright: © Copyright 1981 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia