On asymptotically almost periodic solutions of a convolution equation

Author:
Olof J. Staffans

Journal:
Trans. Amer. Math. Soc. **266** (1981), 603-616

MSC:
Primary 46F10; Secondary 42A75, 45A05

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617554-5

MathSciNet review:
617554

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study questions related to asymptotic almost periodicity of solutions of the linear convolution equation . Here is a complex measure, and and are bounded functions. Basically we are interested in conditions which imply that bounded solutions of are asymptotically almost periodic. In particular, we show that a certain necessary condition on for this to happen is also sufficient, thereby strengthening earlier results. We also include a result on existence of bounded solutions, and indicate a generalization to a distribution equation.

**[1]**R. Doss,*On the almost periodic solutions of a class of integro-differential equations*, Ann. of Math. (2)**81**(1965), 117-123. MR**0170169 (30:408)****[2]**A. M. Fink,*Almost periodic differential equations*, Lecture Notes in Math., vol. 377, Springer-Verlag, Berlin, 1974. MR**0460799 (57:792)****[3]**A. M. Fink and W. R. Madych,*On certain bounded solutions of*, Proc. Amer. Math. Soc.**75**(1979), 235-242. MR**532143 (80f:45001)****[4]**G. S. Jordan, W. R. Madych and R. L. Wheeler,*Linear convolution integral equations with asymptotically almost periodic solutions*, Proc. Amer. Math. Soc.**77**(1980), 337-341. MR**553371 (81a:45006)****[5]**G. S. Jordan and R. L. Wheeler,*Linear integral equations with asymptotically almost periodic solutions*, J. Math. Anal. Appl.**52**(1975), 454-464. MR**0410311 (53:14061)****[6]**Y. Katznelson,*An introduction to harmonic analysis*, Wiley, New York, 1968. MR**0248482 (40:1734)****[7]**J. J. Levin and D. F. Shea,*On the asymptotic behavior of the bounded solutions of some integral equations*. I-III, J. Math. Anal. Appl.**37**(1972), 42-82; 288-326; 537-575. MR**0306849 (46:5971)****[8]**L. H. Loomis,*The spectral characterization of a class of almost periodic functions*, Ann. of Math. (2)**72**(1960), 362-368. MR**0120502 (22:11255)****[9]**H. Pollard,*The harmonic analysis of bounded functions*, Duke Math. J.**20**(1953), 499-512. MR**0057363 (15:215f)****[10]**W. Rudin,*Functional analysis*, McGraw-Hill, New York, 1974. MR**0365062 (51:1315)****[11]**L. Schwartz,*Théorie des distributions*, new ed., Hermann, Paris, 1966. MR**0209834 (35:730)****[12]**D. F. Shea and S. Wainger,*Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations*, Amer. J. Math.**97**(1975), 312-343. MR**0372521 (51:8728)****[13]**O. J. Staffans,*Tauberian theorems for a positive definite form, with applications to a Volterra equation*, Trans. Amer. Math. Soc.**218**(1976), 239-259. MR**0422936 (54:10921)****[14]**-,*On the asymptotic spectra of the bounded solutions of a nonlinear Volterra equation*, J. Differential Equations**24**(1977), 365-382. MR**0463855 (57:3794)****[15]**-,*An asymptotic problem for a positive definite opertor-valued Volterra kernel*, SIAM J. Math. Anal.**9**(1978), 855-866. MR**506767 (80b:45003)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46F10,
42A75,
45A05

Retrieve articles in all journals with MSC: 46F10, 42A75, 45A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0617554-5

Article copyright:
© Copyright 1981
American Mathematical Society