Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A rigid subspace of $ L\sb{0}$


Authors: N. J. Kalton and James W. Roberts
Journal: Trans. Amer. Math. Soc. 266 (1981), 645-654
MSC: Primary 46E30; Secondary 46A22
DOI: https://doi.org/10.1090/S0002-9947-1981-0617557-0
MathSciNet review: 617557
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a closed infinite-dimensional subspace of $ {L_0}(0,1)$ (or $ {L_p}$ for $ 0 < p < 1$) which is rigid, i.e. such that every endomorphism in the space is a multiple of the identity.


References [Enhancements On Off] (What's this?)

  • [1] D. J. H. Garling, Non-negative random measures and order preserving embeddings, J. London Math. Soc. 11 (1975), 35-45. MR 0394868 (52:15667)
  • [2] N. J. Kalton, Linear operators on $ {L_p}$ for $ 0 < p < 1$, Trans. Amer. Math. Soc. 259 (1980), 319-355. MR 567084 (81d:47022)
  • [3] -, Sequences of random variables in $ {L_p}$ for $ 0 < p < 1$ (to appear).
  • [4] N. J. Kalton and N. T. Peck, Quotients of $ {L_p}(0,1)$ for $ 0 < p < 1$, Studia Math. 64 (1979), 65-75. MR 524022 (80d:46051)
  • [5] M. Kanter, Stable laws and embedding of $ {L_p}$-spaces, Amer. Math. Monthly 80 (1973), 403-407. MR 0319277 (47:7821)
  • [6] E. M. Nikišin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970) 129-191 = Russian Math. Surveys 25 (1970), 124-187. MR 0296584 (45:5643)
  • [7] J. W. Roberts, A rigid $ F$-space, unpublished manuscript, 1976.
  • [8] S. Rolewicz, Metric linear spaces, PWN, Warsaw, 1972. MR 808176 (88i:46004b)
  • [9] L. Waelbroeck, A rigid topological vector space, Studia Math. 59 (1977), 227-234. MR 0430725 (55:3730)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E30, 46A22

Retrieve articles in all journals with MSC: 46E30, 46A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0617557-0
Keywords: Rigid $ F$-space, $ {L_p}$-spaces for $ 0 \leqslant p < 1$
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society