Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Baire category principle and uniqueness theorem
HTML articles powered by AMS MathViewer

by J. S. Hwang PDF
Trans. Amer. Math. Soc. 266 (1981), 655-665 Request permission

Abstract:

Applying a theorem of Bagemihl and Seidel (1953), we prove that if ${S_2}$ is a set of second category in $(\alpha ,\beta )$, where $0 \leqslant \alpha < \beta \leqslant 2\pi$, and if $f(z)$ is a function meromorphic in the sector $\Delta (\alpha ,\beta ) = \{ z:0 < \left | z \right | < \infty ,\alpha < \arg z < \beta \}$ for which ${\underline {{\operatorname {lim}}} _{r \to \infty }}\left | {f(r{e^{i\theta }})} \right | > 0$, for all $\theta \in {S_2}$, then there exists a sector $\Delta (\alpha ’,\beta ’) \subseteq \Delta (\alpha ,\beta )$ such that $(\alpha ’,\beta ’) \subseteq {\bar S_2},{S_2}$ is second category in $(\alpha ’,\beta ’)$, and $f(z)$ has no zero in $\Delta (\alpha ’,\beta ’)$. Based on this property, we prove several uniqueness theorems.
References
  • F. Bagemihl and W. Seidel, A general principle involving Baire category, with applications to function theory and other fields, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1068–1075. MR 57940, DOI 10.1073/pnas.39.10.1068
  • F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186–199. MR 65643, DOI 10.1007/BF01181342
  • F. Bagemihl and W. Seidel, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 280 (1960), 17. MR 0121488
  • E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
  • P. Gauthier and W. Seidel, Some applications of Arakélian’s approximation theorems to the theory of cluster sets, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 6, 458–464 (English, with Armenian and Russian summaries). MR 0302919
  • Maurice Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14 (1947), 179–215. MR 20639
  • Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
  • J. S. Hwang, Franz Schnitzer, and Wladimir Seidel, Uniqueness theorems for bounded holomorphic functions, Math. Z. 122 (1971), no. 4, 366–370. MR 390226, DOI 10.1007/BF01110173
  • John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
  • Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
  • J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D40, 30D50
  • Retrieve articles in all journals with MSC: 30D40, 30D50
Additional Information
  • © Copyright 1981 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 266 (1981), 655-665
  • MSC: Primary 30D40; Secondary 30D50
  • DOI: https://doi.org/10.1090/S0002-9947-1981-0617558-2
  • MathSciNet review: 617558