Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Baire category principle and uniqueness theorem

Author: J. S. Hwang
Journal: Trans. Amer. Math. Soc. 266 (1981), 655-665
MSC: Primary 30D40; Secondary 30D50
MathSciNet review: 617558
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Applying a theorem of Bagemihl and Seidel (1953), we prove that if $ {S_2}$ is a set of second category in $ (\alpha ,\beta )$, where $ 0 \leqslant \alpha < \beta \leqslant 2\pi $, and if $ f(z)$ is a function meromorphic in the sector $ \Delta (\alpha ,\beta ) = \{ z:0 < \left\vert z \right\vert < \infty ,\alpha < \arg z < \beta \} $ for which $ {\underline {{\operatorname{lim}}} _{r \to \infty }}\left\vert {f(r{e^{i\theta }})} \right\vert > 0$, for all $ \theta \in {S_2}$, then there exists a sector $ \Delta (\alpha ',\beta ') \subseteq \Delta (\alpha ,\beta )$ such that $ (\alpha ',\beta ') \subseteq {\bar S_2},{S_2}$ is second category in $ (\alpha ',\beta ')$, and $ f(z)$ has no zero in $ \Delta (\alpha ',\beta ')$. Based on this property, we prove several uniqueness theorems.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D40, 30D50

Retrieve articles in all journals with MSC: 30D40, 30D50

Additional Information

PII: S 0002-9947(1981)0617558-2
Keywords: Category principle, uniqueness theorem, meromorphic function, Blaschke product, harmonic measure, tangential approximation
Article copyright: © Copyright 1981 American Mathematical Society