Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Derivatives and Lebesgue points via homeomorphic changes of scale


Author: Don L. Hancock
Journal: Trans. Amer. Math. Soc. 267 (1981), 197-218
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9947-1981-0621982-1
MathSciNet review: 621982
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I$ be a closed interval, and suppose $ \mathcal{K}$, $ \mathcal{H}$, and $ \Lambda $ denote, respectively, the class of homeomorphisms of $ I$ onto itself, the class of homeomorphisms of the line onto itself, and the class of real functions on $ I$ for which each point is a Lebesgue point. Maximoff proved that $ \Lambda \circ \mathcal{K}$ is exactly the class of Darboux Baire $ 1$ functions, where $ \Lambda \circ \mathcal{K} = \{ f \circ k:f \in \Lambda ,k \in \mathcal{K}\} $. The present paper is devoted primarily to a study of $ \mathcal{H} \circ \Lambda = \{ h \circ f:f \in \Lambda ,h \in \mathcal{H}\} $. The characterizations of this class which are obtained show that a function is a member of $ \mathcal{H} \circ \Lambda $ if and only if, in addition to the obvious requirement of approximate continuity, it satisfies certain growth and density-like conditions. In particular, any approximately continuous function with countably many non-Lebesgue points belongs to $ \mathcal{H} \circ \Lambda $. It is also established that $ \mathcal{H} \circ \Lambda $ is a uniformly closed algebra properly containing the smallest algebra generated from $ \Lambda $, and a characterization of the latter algebra is provided.


References [Enhancements On Off] (What's this?)

  • [1] N. Bari, Mémoire sur la représentation finie des fonctions continue, Math. Ann. 103 (1930), 185-248. MR 1512621
  • [2] A. M. Bruckner, Creating differentiability and destroying derivatives, Amer. Math. Monthly 85 (1978), 554-561. MR 0507356 (58:22426)
  • [3] -, Differentiability a.e. and approximate differentiability a.e., Proc. Amer. Math. Soc. 66 (1977), 294-298. MR 0453938 (56:12191)
  • [4] -, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer-Verlag, Berlin, 1978. MR 507448 (80h:26002)
  • [5] -, Inflexible derivatives, Quart. J. Math. Oxford Ser. (2) 29 (1978), 1-10. MR 0476938 (57:16486)
  • [6] A. M. Bruckner and C. Goffman, Differentiability through changes of variable, Proc. Amer. Math. Soc. 61 (1976), 235-241. MR 0432831 (55:5811)
  • [7] R. J. Fleissner and J. Foran, Transformations of differentiable functions, Colloq. Math. (to appear). MR 522368 (80d:26007)
  • [8] D. Hancock, Homeomorphic transformations of approximately continuous functions into derivatives, Doctoral Dissertation, University of California, Santa Barbara, 1979.
  • [9] M. Iosifescu, Conditions that the product of two derivatives be a derivative, Rev. Roumaine Math. Pures Appl. 4 (1959), 641-649. MR 0120328 (22:11083)
  • [10] I. Maximoff, On the continuous transformation of some functions into an ordinary derivative, Ann. Scuola Norm Sup. Pisa. 12 (1943), 147-160. MR 0023895 (9:419a)
  • [11] -, Sur la transformation continue de fonctions, Bull. Soc. Phys.-Math. Kazan (3) 12 (1940), 9-41. MR 0015454 (7:420g)
  • [12] -, Sur la transformation continue de quelques fonctions en dérivées exactes, Bull. Soc. Phys.-Math. Kazan (3) 12 (1940), 57-81. MR 0015456 (7:420i)
  • [13] I. Natanson, Theory of functions of a real variable, Vol. II, Ungar, New York, 1960. MR 0148805 (26:6309)
  • [14] D. Preiss, Maximoff's theorem, Real Anal. Exchange 5 (1980), 92-104. MR 557966 (80m:26007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0621982-1
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society