Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariant connections and Yang-Mills solutions


Author: Mitsuhiro Itoh
Journal: Trans. Amer. Math. Soc. 267 (1981), 229-236
MSC: Primary 53C05; Secondary 53C99, 55R10, 57S15, 81E10
DOI: https://doi.org/10.1090/S0002-9947-1981-0621984-5
MathSciNet review: 621984
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A condition on the self-duality and the stability of Yang-Mills solutions are discussed. The canonical invariant $ G$-connections on $ {S^4}$ and $ {P_2}({\mathbf{C}})$ are considered as Yang-Mills solutions. The non-self-duality of the connections requires the injectivity of the isotropy homomorphisms. We construct examples of non-self-dual connections on $ G$-vector bundles ($ G$ is a compact simple group). Under a certain property of the isotropy homomorphism, these canonical connections are not weakly stable.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, F. R. S. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [2] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), 97-118. MR 503187 (80j:58021)
  • [3] J.-P. Bourguignon, H. B. Lawson and J. Simons, Stability and gap phenomena for Yang-Mills fields, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1150-1153. MR 526178 (80h:53028)
  • [4] J.-P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields (preprint).
  • [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Interscience, New York, 1963. MR 0152974 (27:2945)
  • [6] -, Foundations of differential geometry, Vol. 2, Interscience, New York, 1969.
  • [7] N. R. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C05, 53C99, 55R10, 57S15, 81E10

Retrieve articles in all journals with MSC: 53C05, 53C99, 55R10, 57S15, 81E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0621984-5
Keywords: Yang-Mills solution, canonical connection, self-duality, stability
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society