Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The complexification and differential structure of a locally compact group


Author: Kelly McKennon
Journal: Trans. Amer. Math. Soc. 267 (1981), 237-258
MSC: Primary 22D35; Secondary 43A40
Erratum: Trans. Amer. Math. Soc. 286 (1984), 851.
MathSciNet review: 621985
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of a complexification of a locally compact group is defined and its connections with the differential structure developed. To provide an interpretation in terms of irreducible representations of separable, Type I groups, a duality theorem and Bochner theorem are presented.


References [Enhancements On Off] (What's this?)

  • [1] Charles A. Akemann and Gert K. Pedersen, Complications of semicontinuity in 𝐶*-algebra theory, Duke Math. J. 40 (1973), 785–795. MR 0358361
  • [2] S. Bochner, Vorlesungen über Fouriersche Integrale, Akademische Verlags Gesellschaft, Leipzig, 1932.
  • [3] H. Boseck and G. Czichowski, Grundfunktionen und verallgemeinerte Funktionen auf topologischen Gruppen. I, Math. Nachr. 58 (1973), 215–240 (German). MR 0346518
  • [4] H. Boseck, Über Darstellungen lokal-kompakter topologischer Gruppen, Math. Nachr. 74 (1976), 233–251. MR 0427531
  • [5] François Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes ℘-adiques, Bull. Soc. Math. France 89 (1961), 43–75 (French). MR 0140941
  • [6] C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, N. J., 1946.
  • [7] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. MR 0188745
  • [8] Jacques Dixmier, Les 𝐶*-algèbres et leurs représentations, Deuxième édition. Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). MR 0246136
  • [9] -, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
  • [10] Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 0228628
  • [11] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
  • [12] -, Abstract harmonic analysis. Vol. II, Springer-Verlag, Berlin, 1970.
  • [13] Herbert Heyer, Dualität lokalkompakter Gruppen, Lecture Notes in Mathematics, Vol. 150, Springer-Verlag, Berlin-New York, 1970 (German). MR 0274648
  • [14] G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
  • [15] Richard K. Lashof, Lie algebras of locally compact groups, Pacific J. Math. 7 (1957), 1145–1162. MR 0092104
  • [16] George W. Mackey, The Laplace transform for locally compact Abelian groups, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 156–162. MR 0024446
  • [17] Kelly McKennon, The strict topology and the Cauchy structure of the spectrum of a 𝐶*-algebra, General Topology and Appl. 5 (1975), no. 3, 249–262. MR 0380433
  • [18] Kelly McKennon, The structure space of the trigonometric polynomials on a compact group, J. Reine Angew. Math. 307/308 (1979), 166–172. MR 534218, 10.1515/crll.1979.307-308.166
  • [19] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
  • [20] D. Raikov, Positive definite functions on commutative groups with an invariant measure, C. R. (Doklady) Acad. Sci. URSS (N.S.) 28 (1940), 296–300. MR 0003460
  • [21] J. Riss, Eléments de calcul différentiel et théorie des distributions sur les groupes abéliens localement compacts, Acta Math. 89 (1953), 45–105 (French). MR 0054615
  • [22] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
  • [23] Masamichi Takesaki, Duality and von Neumann algebras, Lectures on operator algebras; Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. II; (dedicated to the memory of David M. Topping), Springer, Berlin, 1972, pp. 665–786. Lecture Notes in Math., Vol. 247. MR 0396844
  • [24] -, Theory of operator algebras. I, Springer-Verlag, Berlin.
  • [25] Martin E. Walter, 𝑊*-algebras and nonabelian harmonic analysis, J. Functional Analysis 11 (1972), 17–38. MR 0352879
  • [26] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. MR 0498999
  • [27] André Weil, On the Riemann hypothesis in functionfields, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 345–347. MR 0004242
  • [28] Hidehiko Yamabe, A generalization of a theorem of Gleason, Ann. of Math. (2) 58 (1953), 351–365. MR 0058607

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D35, 43A40

Retrieve articles in all journals with MSC: 22D35, 43A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0621985-7
Article copyright: © Copyright 1981 American Mathematical Society